

$\Xi(1690)$ as a $\bar{K}\Sigma$ molecular state

Takayasu SEKIHARA (RCNP, Osaka Univ.)

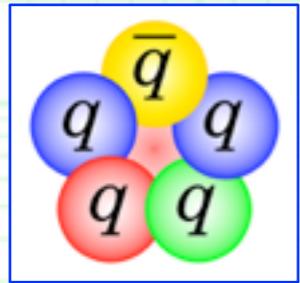
1. Introduction
2. Formulation
3. Numerical results
4. Discussion
5. Summary and outlook

[1] T.S. , arXiv:1505.02849 [hep-ph].

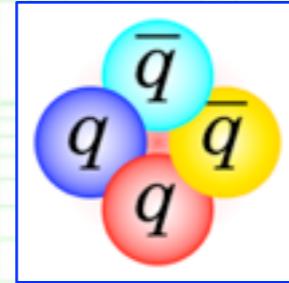
1. Introduction

++ Exotic hadrons and their structure ++

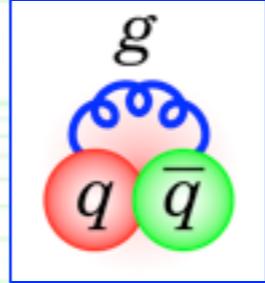
- **Exotic hadrons** --- not same quark component as ordinary hadrons
= not qqq nor $q\bar{q}$.



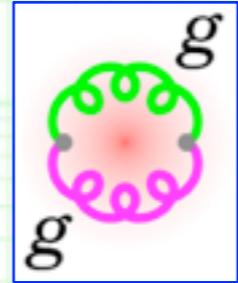
Penta-quarks



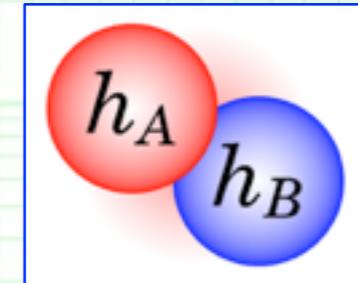
Tetra-quarks



Hybrids



Glueballs



Hadronic molecules

...

--- Actually some hadrons cannot be described by the quark model.

- Do exotic hadrons really exist ?
- If they do exist, how are their properties ?
 - Re-confirmation of quark models.
 - Constituent quarks in multi-quarks ? “Constituent” gluons ?
- If they do not exist, what mechanism forbids their existence ?
<-- We know very few about hadrons (and dynamics of QCD).

1. Introduction

++ The $\Xi(1690)$ resonance ++

■ The $\Xi(1690)$ resonance may be an exotic hadron.

--- Status: *** = existence ranges from very likely to certain, but further confirmation is desirable and/or quantum numbers, branching fractions, etc. are not well determined.

Citation: K.A. Olive *et al.* (Particle Data Group), Chin. Phys. C38, 090001 (2014) (URL: <http://pdg.lbl.gov>)

$\Xi(1690)$

$I(J^P) = \frac{1}{2}(??)$ Status: ***

AUBERT 08AK, in a study of $\Lambda_c^+ \rightarrow \Xi^-\pi^+K^+$, finds some evidence that the $\Xi(1690)$ has $J^P = 1/2^-$.

DIONISI 78 sees a threshold enhancement in both the neutral and negatively charged $\Sigma\bar{K}$ mass spectra in $K^-p \rightarrow (\Sigma\bar{K})K\pi$ at 4.2 GeV/c. The data from the $\Sigma\bar{K}$ channels alone cannot distinguish between a resonance and a large scattering length. Weaker evidence at the same mass is seen in the corresponding $\Lambda\bar{K}$ channels, and a coupled-channel analysis yields results consistent with a new Ξ .

BIAGI 81 sees an enhancement at 1700 MeV in the diffractively produced ΛK^- system. A peak is also observed in the $\Lambda\bar{K}^0$ mass spectrum at 1660 MeV that is consistent with a 1720 MeV resonance decaying to $\Sigma^0\bar{K}^0$, with the γ from the Σ^0 decay not detected.

BIAGI 87 provides further confirmation of this state in diffractive dissociation of Ξ^- into ΛK^- . The significance claimed is 6.7 standard deviations.

ADAMOVICH 98 sees a peak of 1400 ± 300 events in the $\Xi^-\pi^+$ spectrum produced by 345 GeV/c Σ^- -nucleus interactions.

$\Xi(1690)$ MASSES

MIXED CHARGES

VALUE (MeV)

DOCUMENT ID

1690±10 OUR ESTIMATE This is only an educated guess; the error given is larger than the error on the average of the published values.

$\Xi(1690)$ WIDTHS

MIXED CHARGES

VALUE (MeV)

DOCUMENT ID

<30 OUR ESTIMATE

Particle Data Group.

1. Introduction

++ Experiments of the $\Xi(1690)$ resonance ++

- Historically $\Xi(1690)$ was discovered as a threshold enhancement in both the neutral and charged $\bar{K}\Sigma$ mass spectra in the $K^- p \rightarrow (\bar{K}\Sigma) K \pi$ reaction at 4.2 GeV/c.

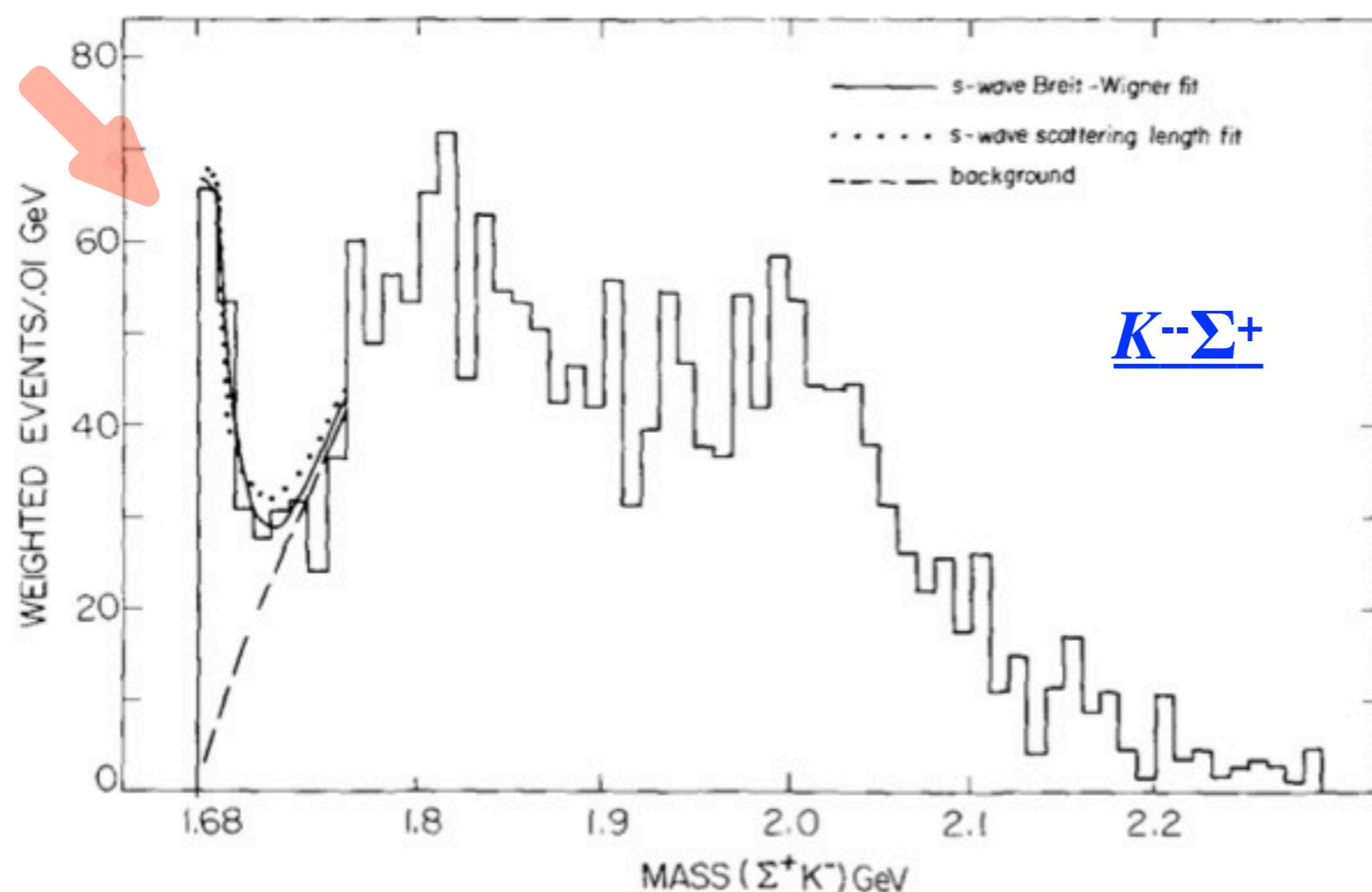


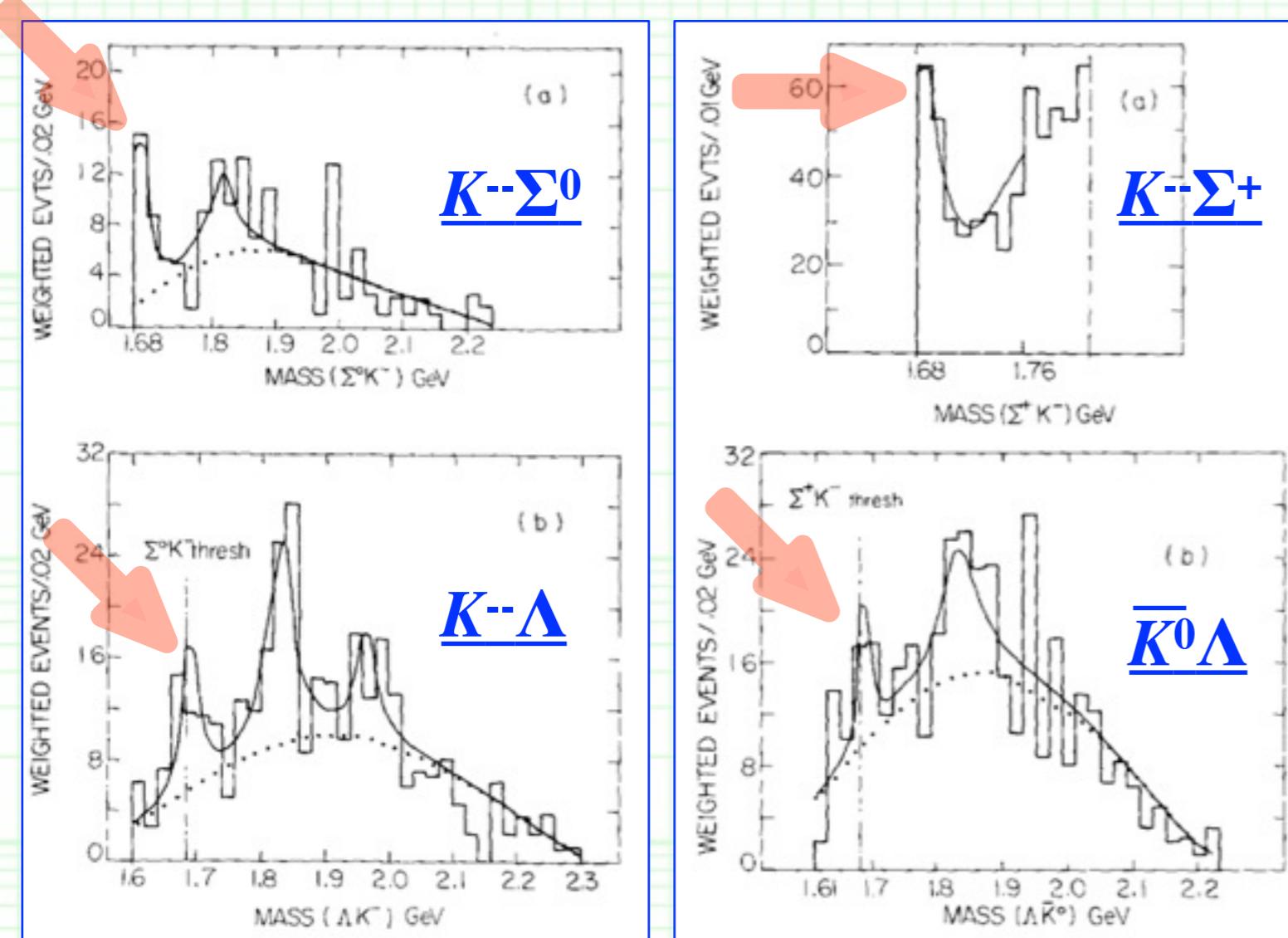
Fig. 1. The $\Sigma^+ K^-$ mass spectrum for the reaction $K^- p \rightarrow \Sigma^+ K^- K^+ \pi^-$ after elimination of ϕ events mass ($K^+ K^-$ less than 1.03 GeV). The origin of the curves is indicated.

C. Dionisi *et al.*, *Phys. Lett. B80* (1978) 145.

1. Introduction

++ Experiments of the $\Xi(1690)$ resonance ++

- Historically $\Xi(1690)$ was discovered as **a threshold enhancement in both the neutral and charged $\bar{K}\Sigma$ mass spectra in the $K^- p \rightarrow (\bar{K}\Sigma) K \pi$ reaction at 4.2 GeV/c.**



--- **Rapid enhancement at the threshold of the $\bar{K}\Sigma$ mass spectra implies that this couples to the $\bar{K}\Sigma$ channel in *s* wave.**
 $\Leftrightarrow J^P = 1/2^-$.

C. Dionisi *et al.*, *Phys. Lett.* **B80** (1978) 145.

1. Introduction

++ Experiments of the $\Xi(1690)$ resonance ++

- $\Xi(1690)$ has been observed and investigated in several experiments, for instance:

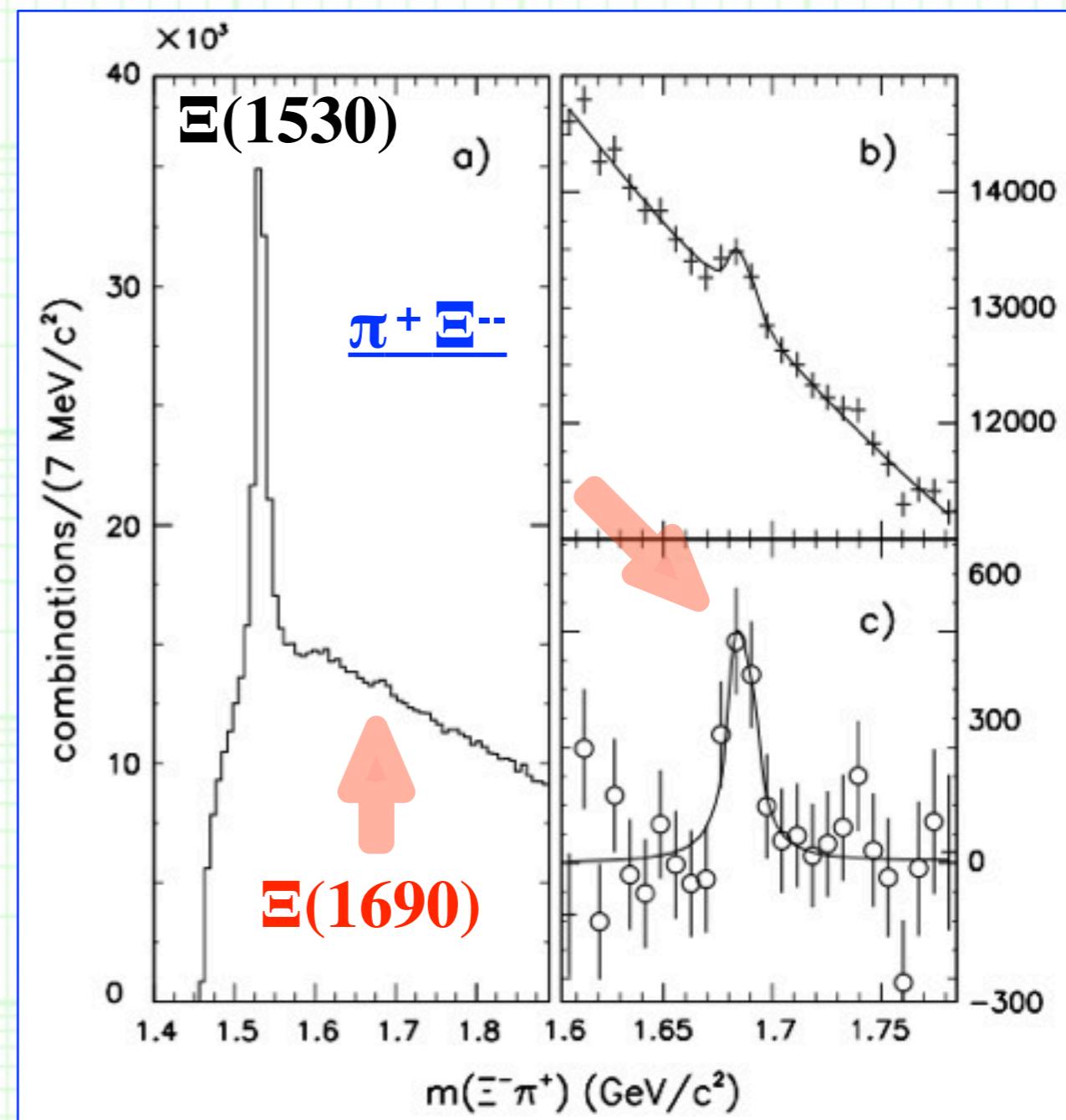
- **Small total decay width and tiny branching fraction to the $\pi\Xi$ state.**

$$M = 1686 \pm 4 \text{ MeV}/c^2, \Gamma = 10 \pm 6 \text{ MeV}/c^2.$$

$$\frac{\sigma \cdot BR(\Xi^0(1690) \rightarrow \Xi^- \pi^+)}{\sigma \cdot BR(\Xi^0(1530) \rightarrow \Xi^- \pi^+)} = 0.022 \pm 0.005.$$

--- Using a Σ^- beam on nucleus.

M. I. Adamovich *et al.* [WA89 Collab.],
Eur. Phys. J. C5 (1998) 621.



1. Introduction

++ Experiments of the $\Xi(1690)$ resonance ++

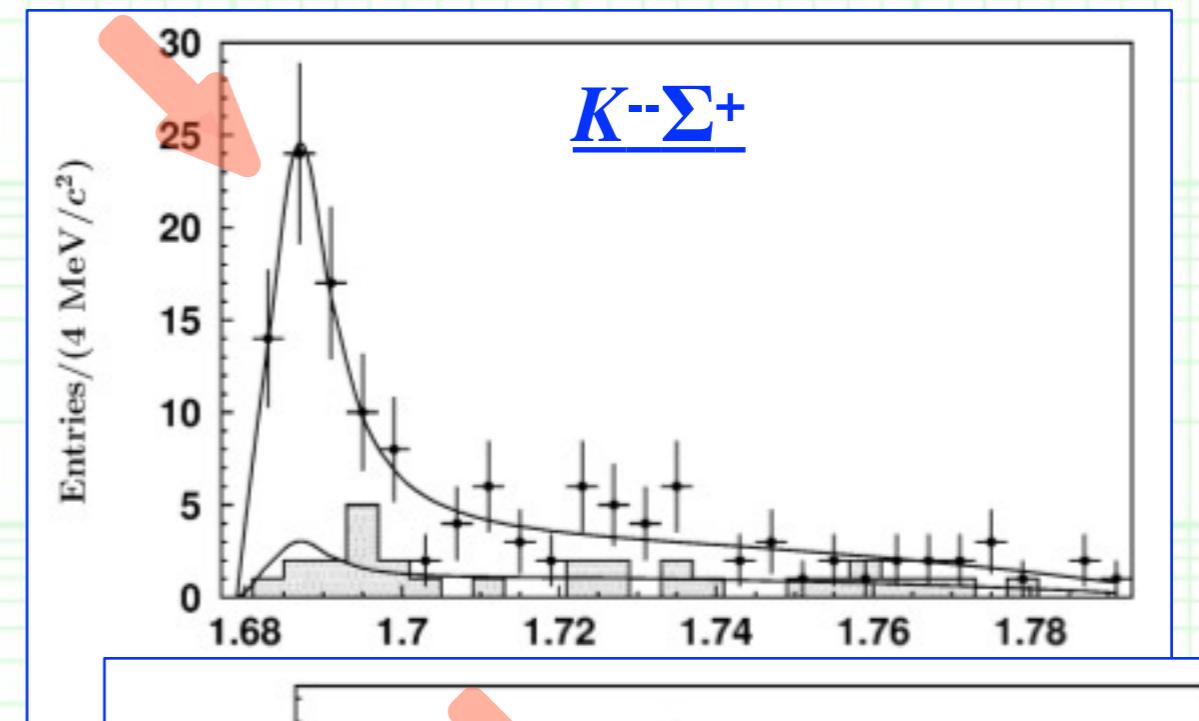
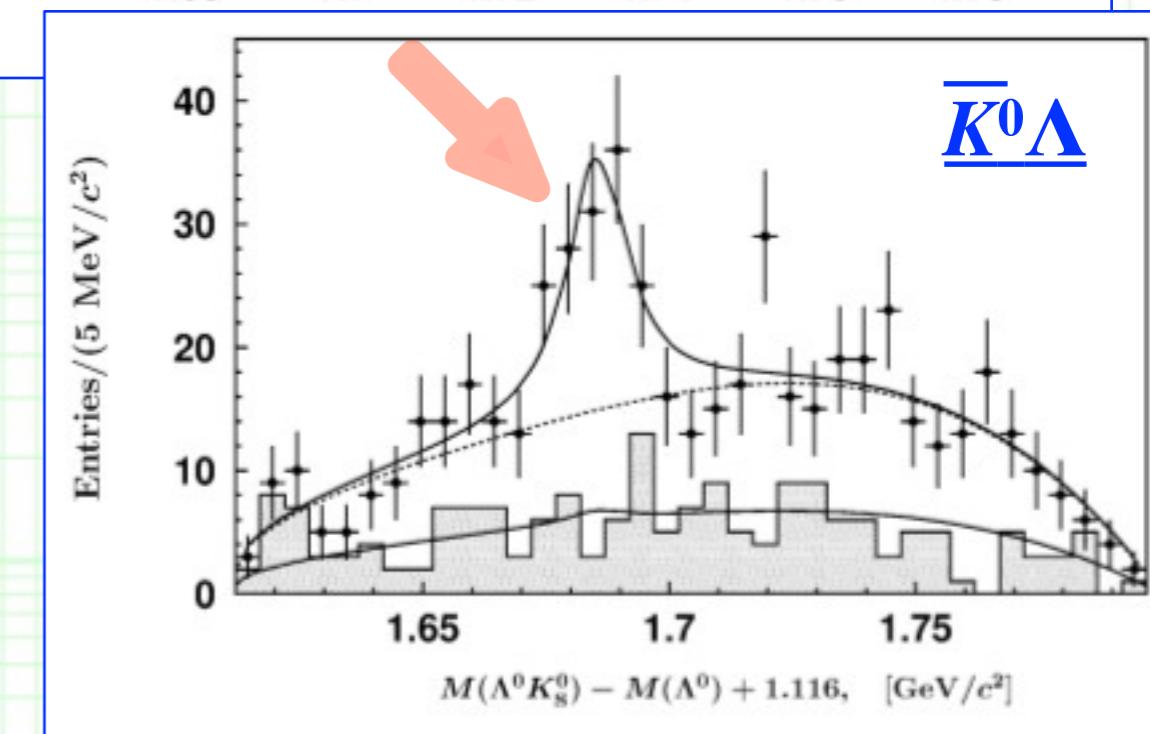
- $\Xi(1690)$ has been observed and investigated in several experiments, for instance:

- **Small total decay width and tiny branching fraction to the $\pi\Xi$ state.**
- **$\Xi(1690)$ can be observed in Λ_c^+ decay as well, giving the mass spectra, branching fractions, and their ratios involving $\Xi(1690)$.**

$$\frac{\mathcal{B}(\Xi(1690)^0 \rightarrow \Sigma^+ K^-)}{\mathcal{B}(\Xi(1690)^0 \rightarrow \Lambda^0 \bar{K}^0)} = 0.50 \pm 0.26.$$

--- Using an $e^+ e^-$ collider.

K. Abe *et al.* [Belle Collab.],
Phys. Lett. B524 (2002) 33.



1. Introduction

++ Experiments of the $\Xi(1690)$ resonance ++

- $\Xi(1690)$ has been observed and investigated in several experiments, for instance:

- **Small total decay width and tiny branching fraction to the $\pi\Xi$ state.**
- **$\Xi(1690)$ can be observed in Λ_c^+ decay as well, giving the mass spectra, branching fractions, and their ratios involving $\Xi(1690)$.**
- **A dip in the $P_0(\cos \theta)$ moment of the $\pi^+ \Xi^-$ mass spectrum appears in the vicinity of $\Xi(1690)$, which implies that $\Xi(1690)$ has $J^P = 1/2^-$.**

B. Aubert *et al.* [BaBar Collab.], *Phys. Rev. D78* (2008) 034008.

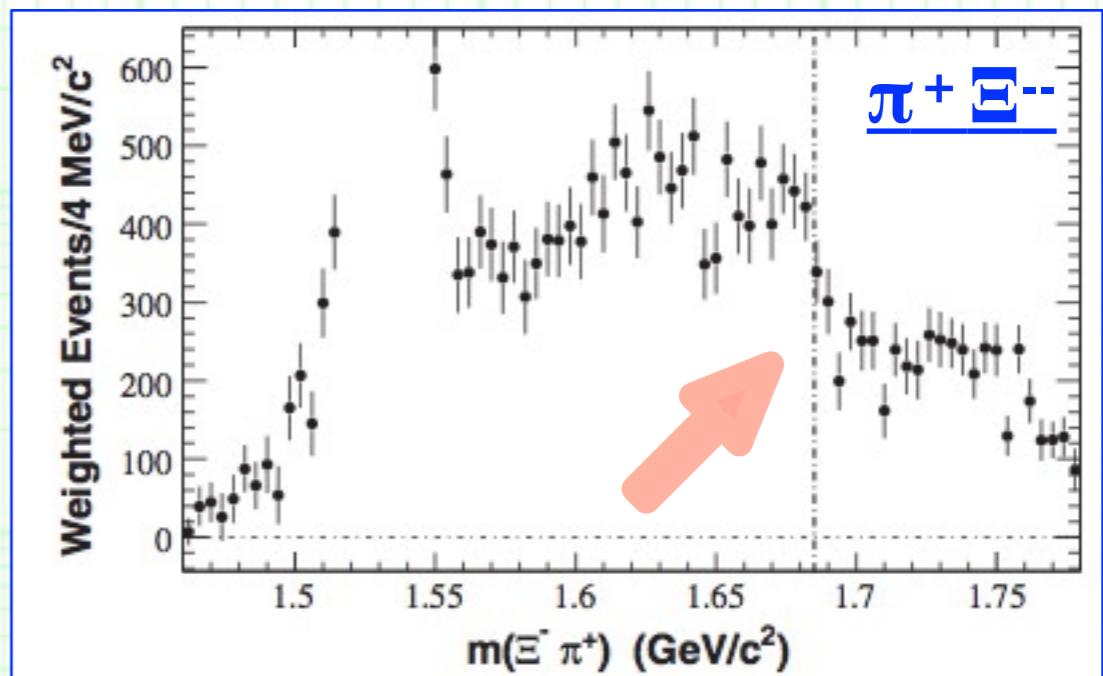
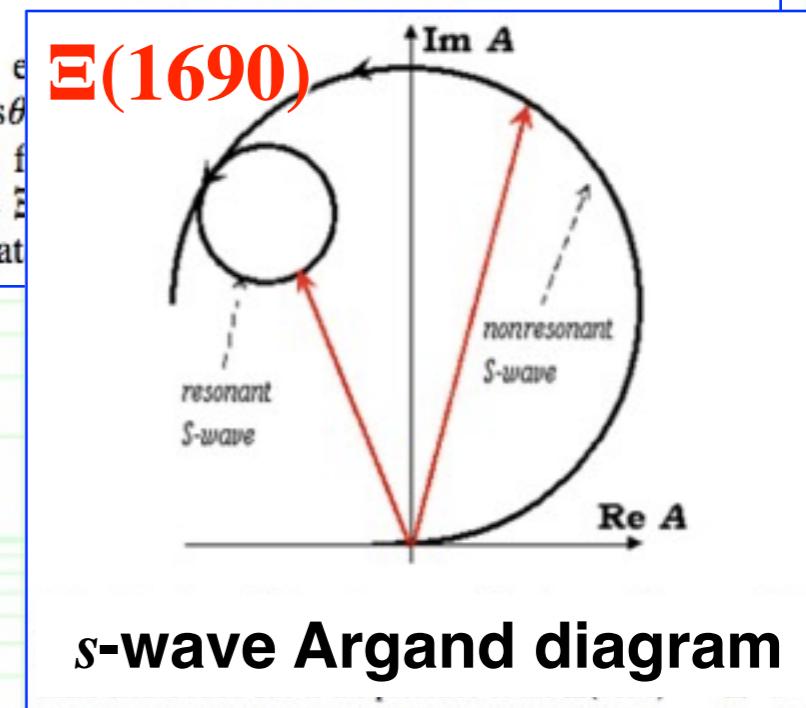


FIG. 10. The $\pi^+ \Xi^-$ mass spectrum. The subtracted $P_0(\cos \theta)$ mass distribution from Fig. 3(a) with the $\Xi(1690)$ signal. The dashed line indicates the background fit.



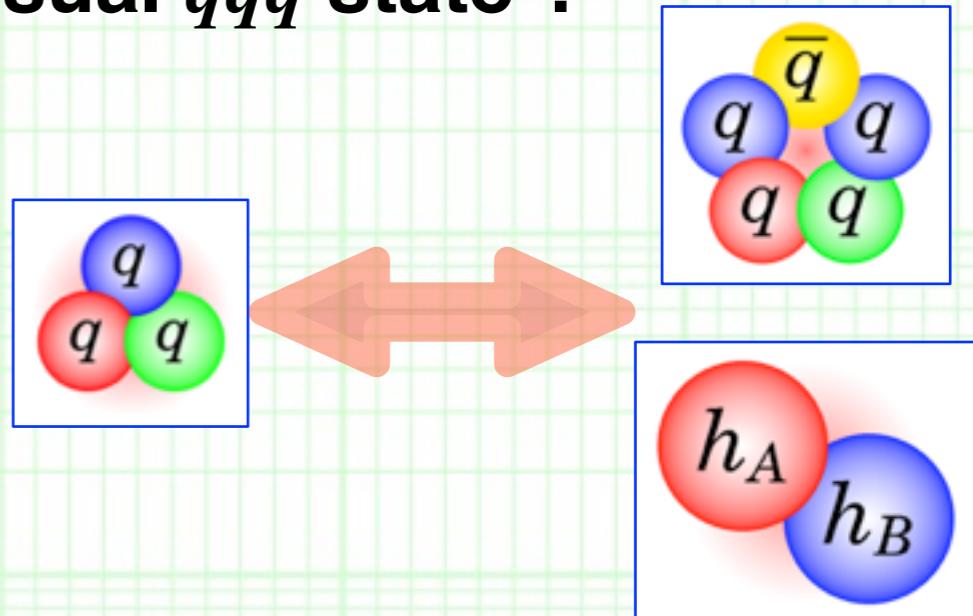
1. Introduction

++ Experiments of the $\Xi(1690)$ resonance ++

- $\Xi(1690)$ has been observed and investigated in several experiments, for instance:

- Small total decay width and tiny branching fraction to the $\pi\Xi$ state.
- $\Xi(1690)$ can be observed in Λ_c^+ decay as well, giving the mass spectra, branching fractions, and their ratios involving $\Xi(1690)$.
- A dip in the $P_0(\cos \theta)$ moment of the $\pi^+ \Xi^-$ mass spectrum appears in the vicinity of $\Xi(1690)$, which implies that $\Xi(1690)$ has $J^P = 1/2^-$.

- The small decay width and tiny branching fraction to the $\pi\Xi$ state is un-natural.
--> $\Xi(1690)$ might have a some non-trivial structure than usual qqq state ?



-- But its properties and structure are **still unclear**.

1. Introduction

++ Theories of the $\Xi(1690)$ resonance ++

- $\Xi(1690)$ and other Ξ^* resonances has been investigated in several theoretical frameworks as well, for instance:

- **Quark models.**

- K. T. Chao, N. Isgur and G. Karl, *Phys. Rev. D23* (1981) 155;

- S. Capstick and N. Isgur, *Phys. Rev. D34* (1986) 2809;

- M. Pervin and W. Roberts, *Phys. Rev. C77* (2008) 025202;

- L. Y. Xiao and X. H. Zhong, *Phys. Rev. D87* (2013) 094002;

- N. Sharma, A. Martinez Torres, K. P. Khemchandani and H. Dahiya, *Eur. Phys. J. A49* (2013) 11;

- ...

- **Skyrme model.**

- Y. Oh, *Phys. Rev. D75* (2007) 074002.

- **Chiral unitary approach.**

- A. Ramos, E. Oset and C. Bennhold, *Phys. Rev. Lett. 89* (2002) 252001;

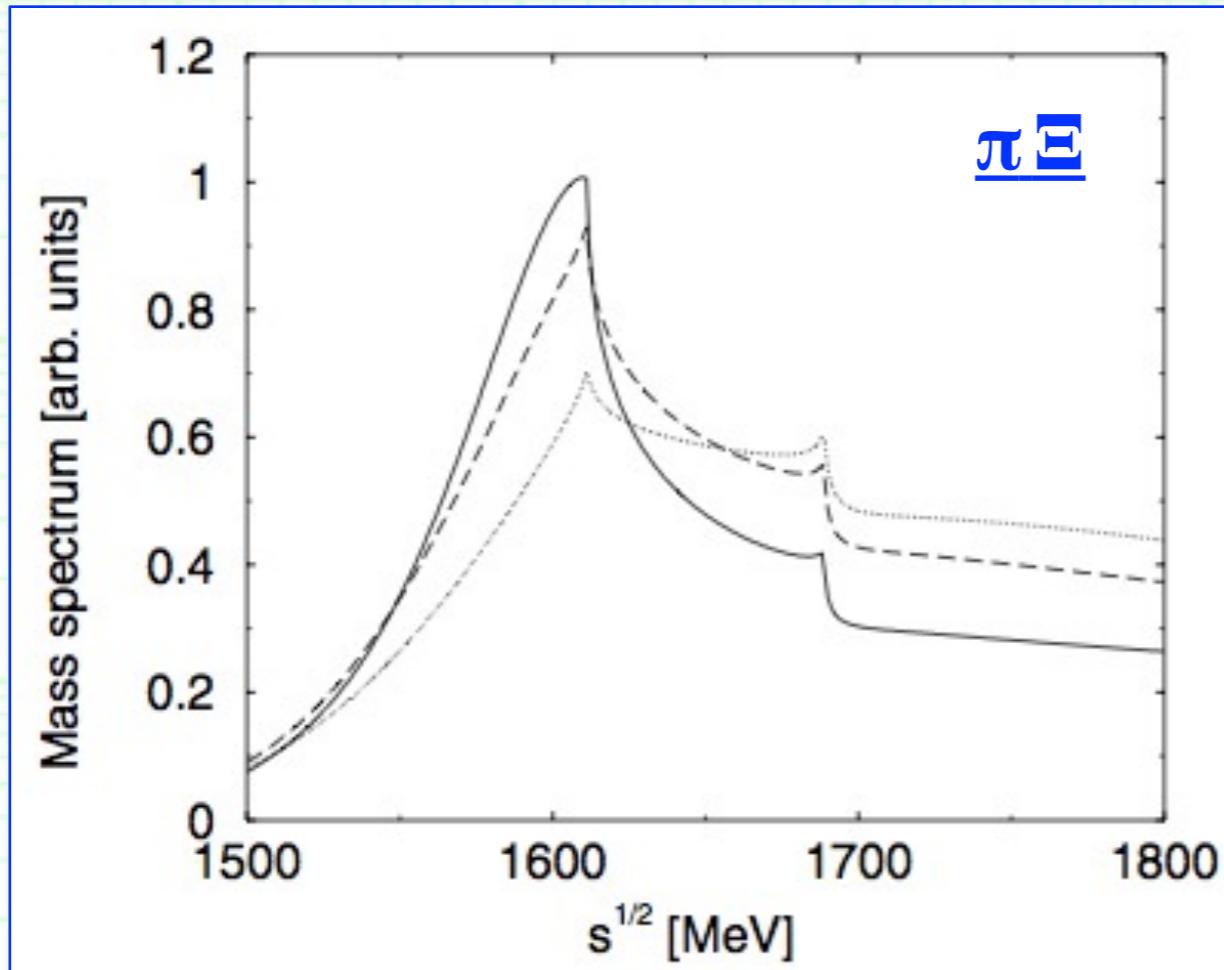
- C. Garcia-Recio, M. F. M. Lutz and J. Nieves, *Phys. Lett. B582* (2004) 49;

- D. Gamermann, C. Garcia-Recio, J. Nieves and L. L. Salcedo, *Phys. Rev. D84* (2011) 056017.

1. Introduction

++ Ξ^* resonances in chiral unitary approach ++

- Ξ^* resonances in chiral unitary approach.
- Based on the combination of the chiral perturbation theory and the unitarization of the scattering amplitude.



- First, another Ξ^* resonance, $\Xi(1620)$, was studied in the s-wave $\pi\Xi$ - $\bar{K}\Lambda$ - $\bar{K}\Sigma$ - $\eta\Xi$ coupled-channels scattering in the chiral unitary approach.
- $\Xi(1620)$ status: *
- $J^P = 1/2^{--} ?$

A. Ramos, E. Oset and C. Bennhold, *Phys. Rev. Lett.* **89** (2002) 252001.

1. Introduction

++ Ξ^* resonances in chiral unitary approach ++

- Ξ^* resonances in chiral unitary approach.
- Based on the combination of the chiral perturbation theory and the unitarization of the scattering amplitude.

$(\frac{1}{2}, -2)$		$[\pi \Xi]$	7.5	5.6	seen	2.6
$\Xi(1620)^*$		$[\bar{K}\Lambda]$	5.2	2.8	seen	-1.5
$M \approx 1620$	1565	$[\bar{K}\Sigma]$	0.7	2.6	0	-0.8
$\Gamma = 23$	247	$[\eta \Xi]$	0.3	4.9	0	0.3
$(\frac{1}{2}, -2)$		$[\pi \Xi]$	0.02	0.1	seen	-0.1
$\Xi(1690)^{***}$		$[\bar{K}\Lambda]$	0.16	6.0	seen	0.9
$M = 1690 \pm 10$	1663	$[\bar{K}\Sigma]$	5.15	3.1	seen	-2.5
$\Gamma = 10 \pm 6$	4	$[\eta \Xi]$	2.28	3.2	0	-1.7

- Then, **systematic studies were done for several Ξ^* states together with many other resonances.**

C. Garcia-Recio, M. F. M. Lutz and J. Nieves,
Phys. Lett. B582 (2004) 49.

--- **Narrow width for $\Xi(1690)$!
 But its mass is lower than Exp. value.**

8 (1134)	2037-24i	0.6	0.6	0.3	0.2	0.3	\uparrow	0.5	1.5	0.6	1.8	2.4	1.1	0.2	1.0	2.1	
10 (70)	1729-46i	0.6	1.4	0.4	\uparrow	1.6	1.4	2.1	1.0	0.4	3.3	1.5	0.4	0.2	1.6	1.0	$\Xi(1950)$ ***
8 (70)	1651-2i	0.2	0.3	\uparrow	2.2	1.3	1.0	2.6	0.2	0.6	0.9	0.4	0.2	1.7	0.4	0.2	$\Xi(1690)$ ***
8 (56)	1577-139i	2.6	\uparrow	1.7	0.5	0.1	0.8	1.0	0.7	0.1	0.6	1.3	0.3	0.1	0.2	1.2	$\Xi(1620)$ *

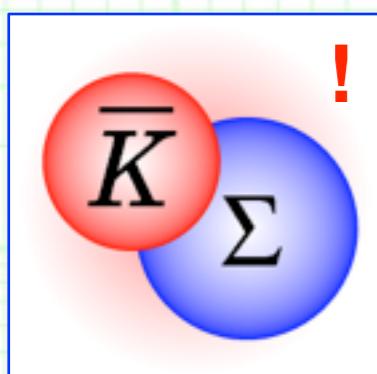
D. Gamermann, C. Garcia-Recio, J. Nieves and L. L. Salcedo, *Phys. Rev. D84* (2011) 056017.

1. Introduction

++ In this study ... ++

- In this study we **concentrate on the phenomena near the $\bar{K}\Sigma$ threshold and on the $\Xi(1690)$ resonance.**
- By using **the chiral unitary approach** and adjusting parameters, we show **the $\Xi(1690)$ state**, which was studied in the previous studies, **can exist near the $\bar{K}\Sigma$ threshold with $J^P = 1/2^-$** , and it **reproduces experimental mass spectra qualitatively well**.
- We **investigate and clarify properties of the $\Xi(1690)$ state**, including its small decay width, molecular structure, etc.

--- We especially show that **the $\Xi(1690)$ resonance can be indeed an *s*-wave $\bar{K}\Sigma$ molecular state in terms of the compositeness.**



Hyodo-Jido-Hosaka (2012), Aceti-Oset (2012), Nagahiro-Hosaka (2014),

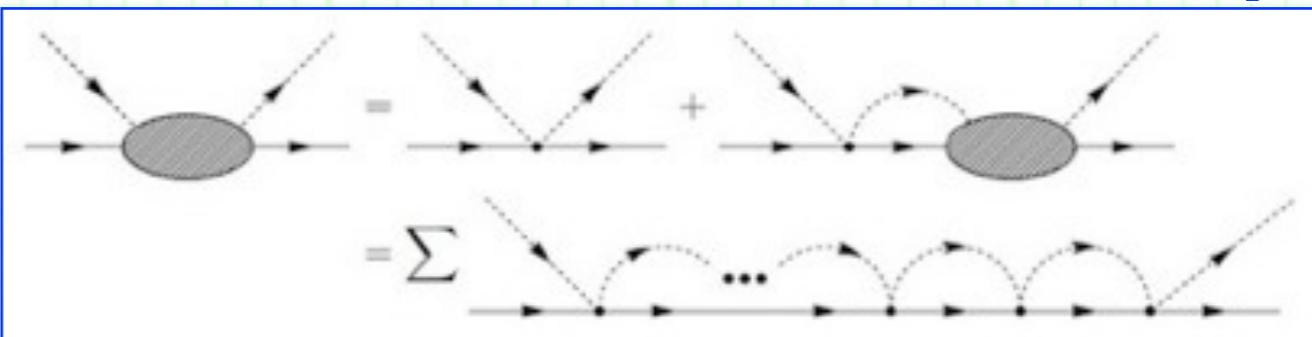
See Hyodo, *Int. J. Mod. Phys. A* **28** (2013) 1330045;
also T. S., Hyodo and Jido, *PTEP* (2015) in press [arXiv:1411.2308].

2. Formulation

++ Chiral unitary approach ++

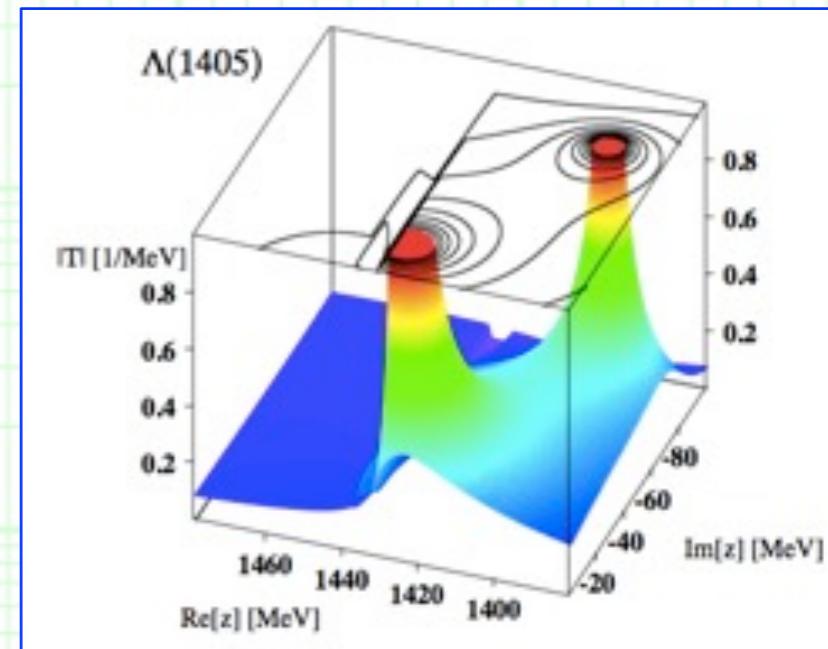
- We employ **the chiral unitary approach** for the s-wave $\bar{K}\Sigma$ - $\bar{K}\Lambda$ - $\pi\Xi$ - $\eta\Xi$ coupled-channels scattering.

$$T_{jk}(w) = V_{jk}(w) + \sum_l V_{jl}(w) G_l(w) T_{lk}(w)$$



- **T** is the scattering amplitude which we want to obtain.
- **V** is the interaction kernel taken from the chiral perturbation theory projected to s-wave.
- **G** is the loop function for the meson-baryon two-body system.
- The chiral unitary approach is **most successful in the $\bar{K}N$ interaction and $\Lambda(1405)$** .

Kaiser-Siegel-Weise (1995), Oset-Ramos (1998),
Oller-Meissner (2001), Lutz-Kolomeitsev (2002),
Jido *et al.* (2003),



Hyodo and Jido (2012).

2. Formulation

++ Interaction kernel ++

- In this study we use the Weinberg-Tomozawa interaction for V .
- The leading order term in s wave:

$$V_{jk}(w) = -\frac{C_{jk}}{4f_j f_k} (2w - M_j - M_k) \sqrt{\frac{E_j + M_j}{2M_j}} \sqrt{\frac{E_k + M_k}{2M_k}}$$

- The meson decay constant f_i is chosen at their physical values:

$$f_\pi = 92.2 \text{ MeV}, \quad f_K = 1.2 f_\pi, \quad f_\eta = 1.3 f_\pi$$

Particle Data Group.

- The Clebsch-Gordan coefficient C_{jk} is determined from the group structure of the flavor $SU(3)$ symmetry:

	$K^-\Sigma^+$	$\bar{K}^0\Sigma^0$	$\bar{K}^0\Lambda$	$\pi^+\Xi^-$	$\pi^0\Xi^0$	$\eta\Xi^0$
$K^-\Sigma^+$	1	$-\sqrt{2}$	0	0	$-1/\sqrt{2}$	$-\sqrt{3/2}$
$\bar{K}^0\Sigma^0$	$-\sqrt{2}$	0	0	$-1/\sqrt{2}$	$-1/2$	$\sqrt{3/4}$
$\bar{K}^0\Lambda$	0	0	0	$-\sqrt{3/2}$	$\sqrt{3/4}$	$-3/2$
$\pi^+\Xi^-$	0	$-1/\sqrt{2}$	$-\sqrt{3/2}$	1	$-\sqrt{2}$	0
$\pi^0\Xi^0$	$-1/\sqrt{2}$	$-1/2$	$\sqrt{3/4}$	$-\sqrt{2}$	0	0
$\eta\Xi^0$	$-\sqrt{3/2}$	$\sqrt{3/4}$	$-3/2$	0	0	0

--- We have no free parameters in the interaction kernel.

2. Formulation

++ Loop function ++

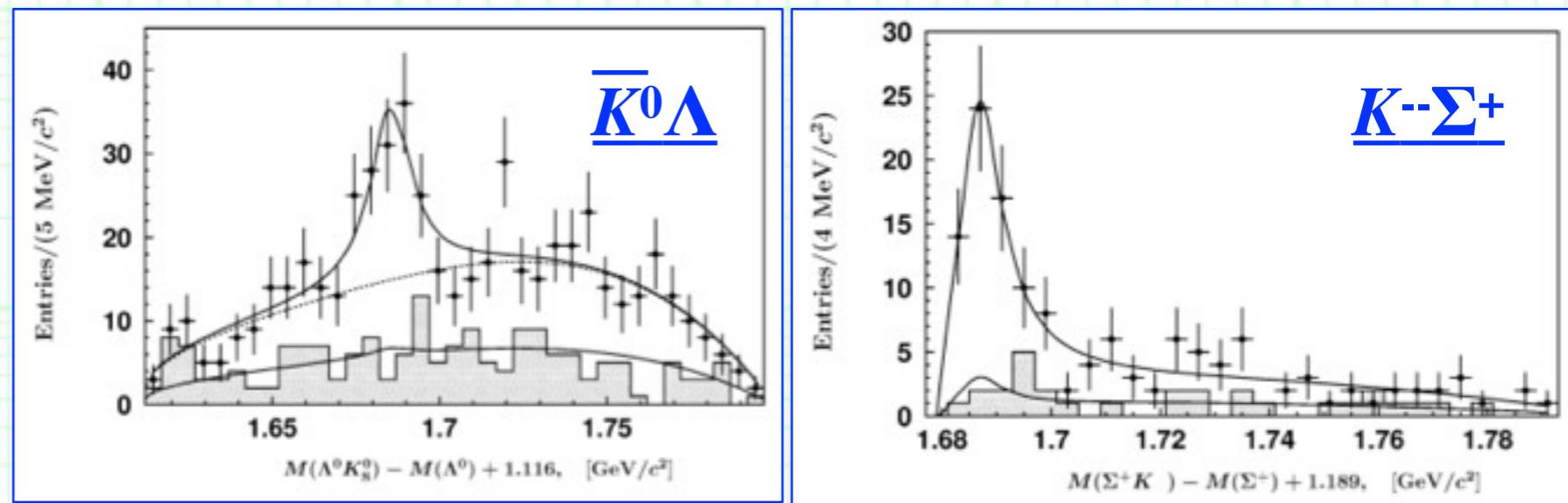
- For the loop function we take a covariant expression:

$$G_j(w) = i \int \frac{d^4 q}{(2\pi)^4} \frac{1}{(P/2 + q)^2 - m_j^2 + i0} \frac{2M_j}{(P/2 - q)^2 - M_j^2 + i0}$$

- The integral is calculated with the dimensional regularization, and an infinite constant is replaced with a subtraction constant in each channel.
- > Subtraction constants are free parameters.
- We assume the isospin symmetry for the subtraction constants, so we have **4 free parameters** ($a_{K\Sigma}$, $a_{K\Lambda}$, $a_{\pi\Sigma}$, and $a_{\eta\Sigma}$), which are fixed so as to reproduce the mass spectra by Belle.

--- Neutral $\Xi(1690)$.

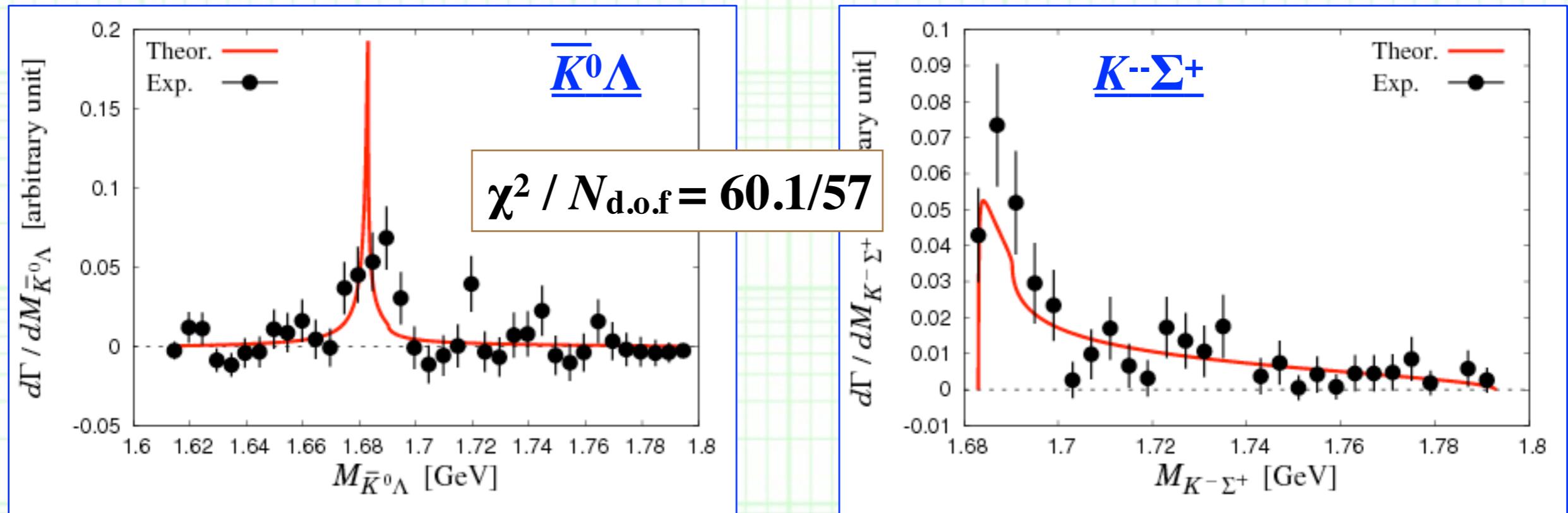
K. Abe *et al.* [Belle Collab.],
Phys. Lett. B524 (2002) 33.



3. Numerical results

++ Fitting to the Belle data ++

- We fix **4 free parameters** ($a_{K\Sigma}$, $a_{K\Lambda}$, $a_{\pi\Sigma}$, and $a_{\eta\Sigma}$) **so as to reproduce the mass spectra by Belle**. The result of the best fit is:



- Background of the Belle data is subtracted.
- Relative scale between $\bar{K}^0 \Lambda$ and $K^- \Sigma^+$ is fixed with the branching fractions:

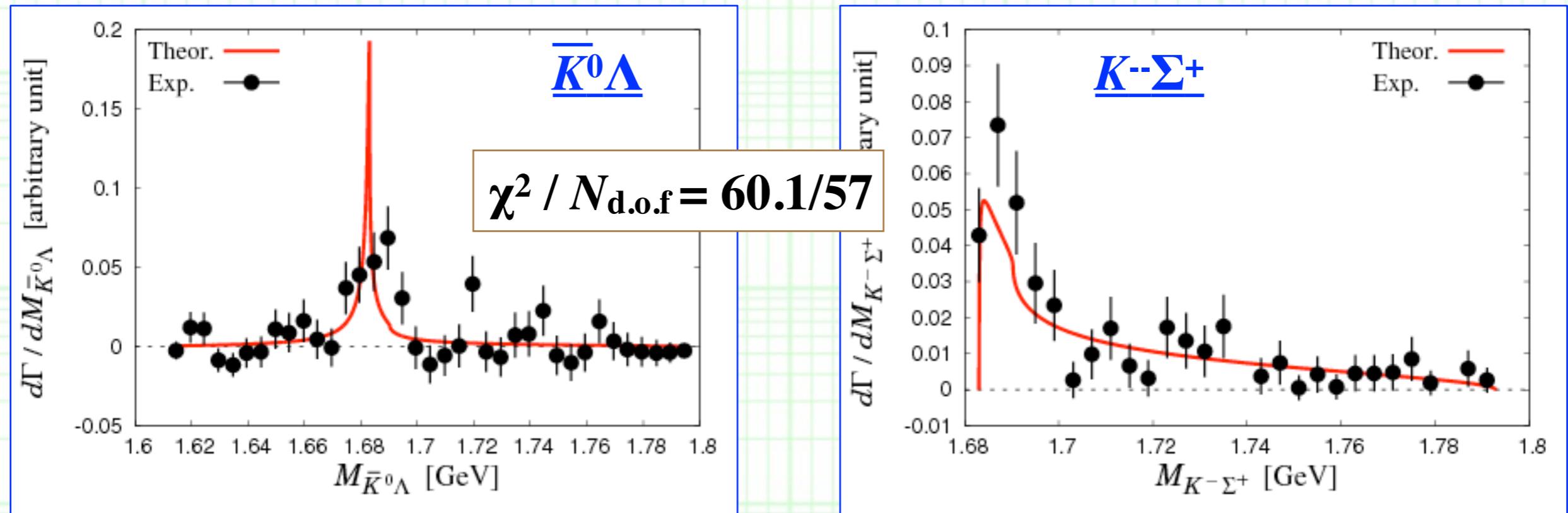
$$\mathcal{B}[\Lambda_c^+ \rightarrow \Xi(1690)^0 K^+ \rightarrow (K^- \Sigma^+) K^+] = (1.3 \pm 0.5) \times 10^{-3}$$

$$\mathcal{B}[\Lambda_c^+ \rightarrow \Xi(1690)^0 K^+ \rightarrow (\bar{K}^0 \Lambda) K^+] = (8.1 \pm 3.0) \times 10^{-4}$$

3. Numerical results

++ Fitting to the Belle data ++

- We fix **4 free parameters** ($a_{K\Sigma}$, $a_{K\Lambda}$, $a_{\pi\Sigma}$, and $a_{\eta\Sigma}$) **so as to reproduce the mass spectra by Belle**. The result of the best fit is:



1. The Belle data on $\Xi(1690)$ are reproduced qualitatively well.

--- We can calculate the ratio

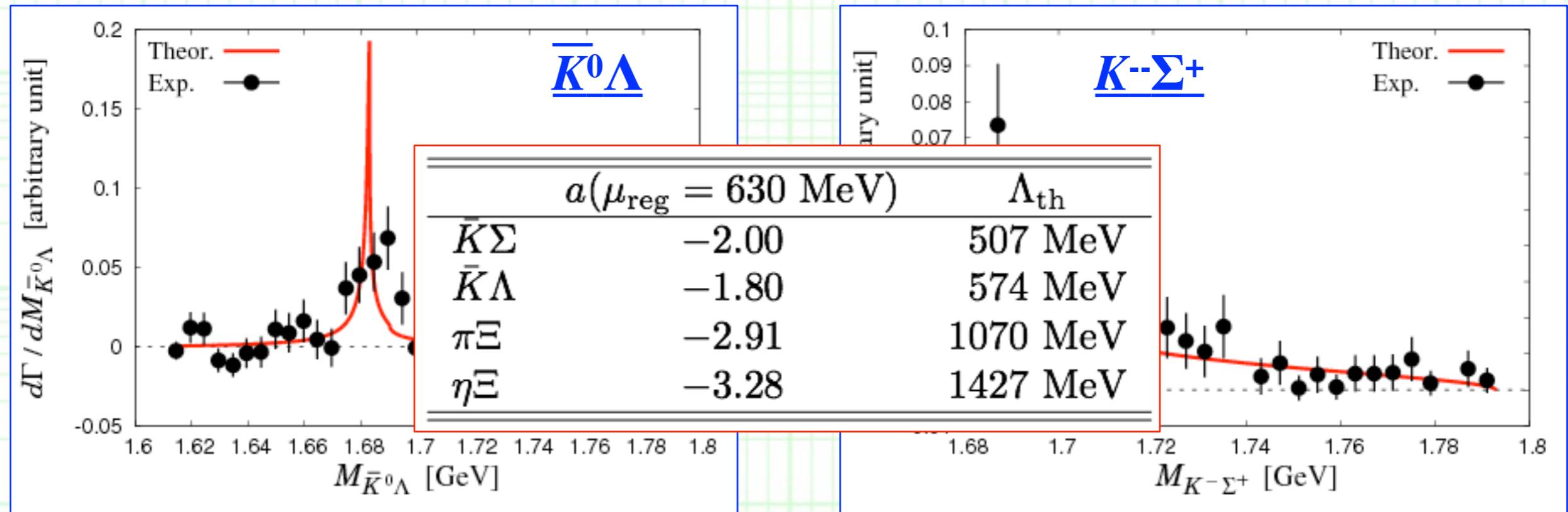
$$R \equiv \frac{\mathcal{B}[\Lambda_c^+ \rightarrow \Xi(1690)^0 K^+ \rightarrow (K^- \Sigma^+) K^+]}{\mathcal{B}[\Lambda_c^+ \rightarrow \Xi(1690)^0 K^+ \rightarrow (\bar{K}^0 \Lambda) K^+]}$$

$$R_{\text{th}} = 1.16 \Leftrightarrow R_{\text{exp}} = 0.62 \pm 0.33.$$

3. Numerical results

++ Fitting to the Belle data ++

- We fix **4 free parameters** ($a_{K\Sigma}$, $a_{K\Lambda}$, $a_{\pi\Sigma}$, and $a_{\eta\Sigma}$) **so as to reproduce the mass spectra by Belle**. The result of the best fit is:

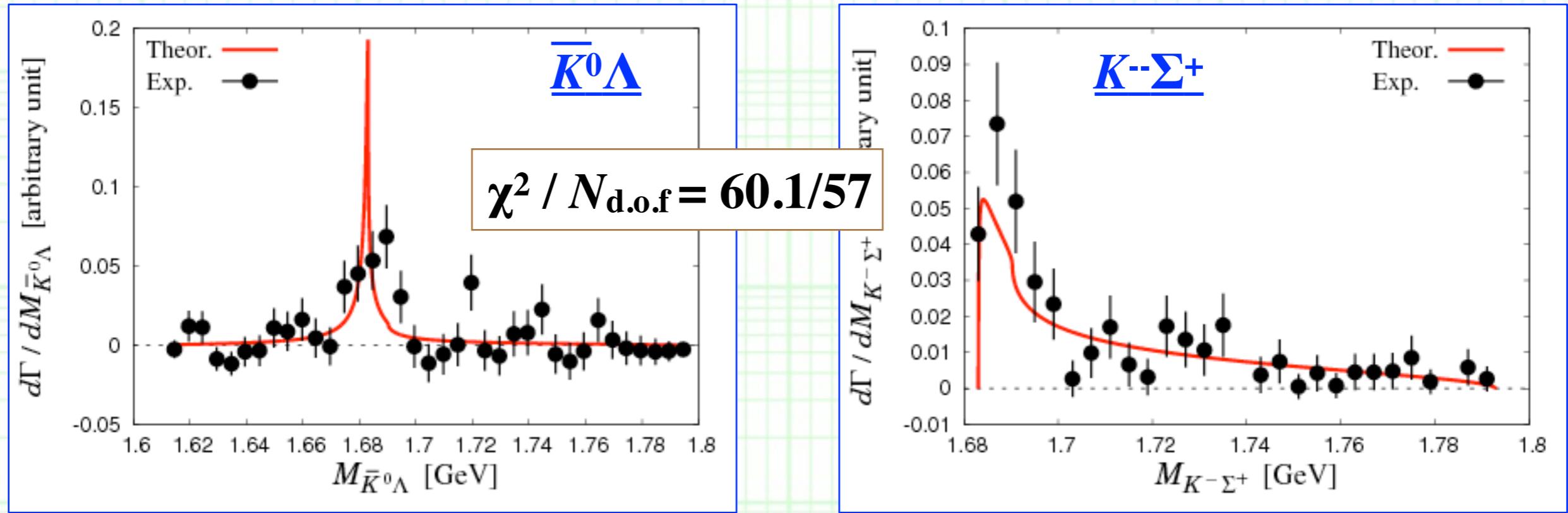


1. The Belle data on $\Xi(1690)$ are reproduced qualitatively well.
2. Subtraction constants are “natural”, as the values of the corresponding three-dimensional cut-off at the threshold, Λ_{th} , is about 500 - 1500 MeV.

3. Numerical results

++ Fitting to the Belle data ++

- We fix **4 free parameters** ($a_{K\Sigma}$, $a_{K\Lambda}$, $a_{\pi\Sigma}$, and $a_{\eta\Sigma}$) **so as to reproduce the mass spectra by Belle**. The result of the best fit is:



1. The Belle data on $\Xi(1690)$ are reproduced qualitatively well.
2. Subtraction constants are “natural”.
3. The $\Xi(1690)$ pole is dynamically generated at $1684.0 - 0.6 i$ MeV, whose real part is between the $K^- \Sigma^+$ and the $\bar{K}^0 \Sigma^0$ thresholds.
--- This pole exists in the first Riemann sheet of both $\bar{K}\Sigma$ channels.

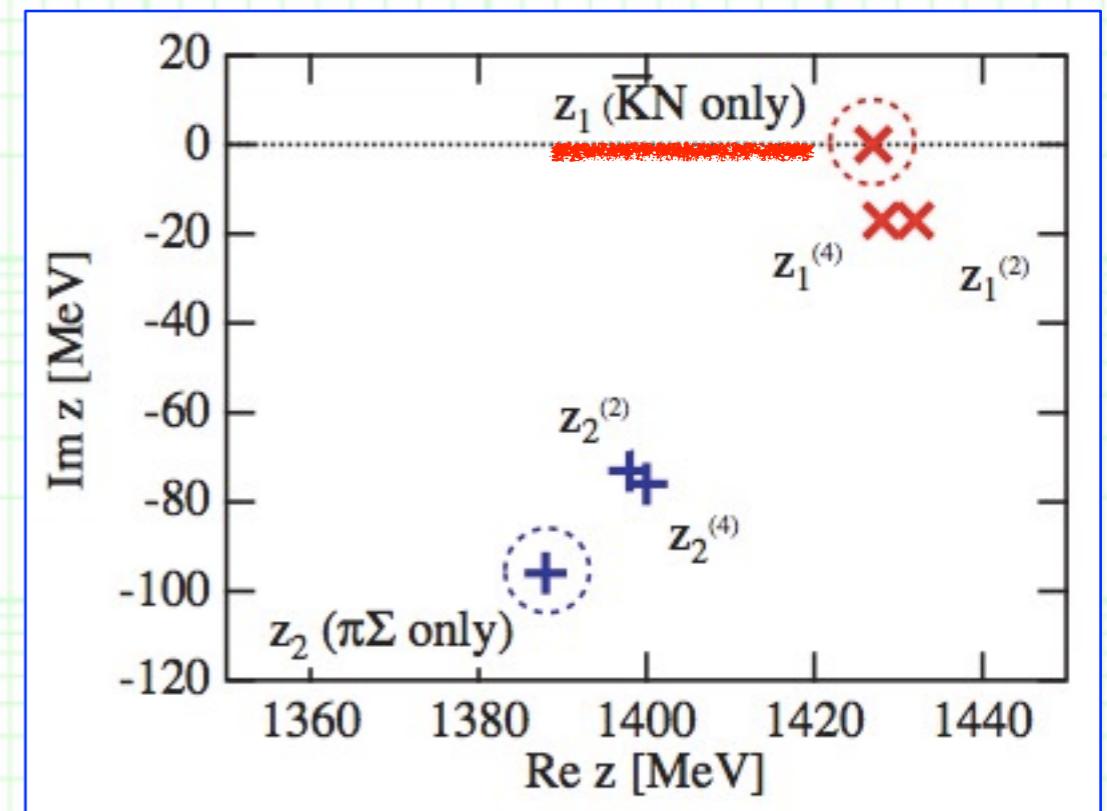
4. Discussions

++ Origin of $\Xi(1690)$ ++

- We naively expect that **the $\Xi(1690)^0$ (pole at $1684.0 - 0.6 i$ MeV) would originate from the $\bar{K}\Sigma$ bound state generated by the strongly attractive interaction between $\bar{K}\Sigma$.**
- *cf.* The strongly attractive $\bar{K}N(I=0)$ interaction for $\Lambda(1405)$.

- Thus we consider a $\bar{K}\Sigma(I=1/2)$ single channel problem (isospin basis), in which a bound state would appear at the energy of $V^{-1} = G$.

C_{jk}	$\bar{K}\Sigma$	$\bar{K}\Lambda$	$\pi\Sigma$	$\eta\Sigma$
$\bar{K}\Sigma$	2	0	$-1/2$	$3/2$
$\bar{K}\Lambda$	0	0	$-3/2$	$-3/2$
$\pi\Sigma$	$-1/2$	$-3/2$	2	0
$\eta\Sigma$	$3/2$	$-3/2$	0	0



For $\Lambda(1405)$.

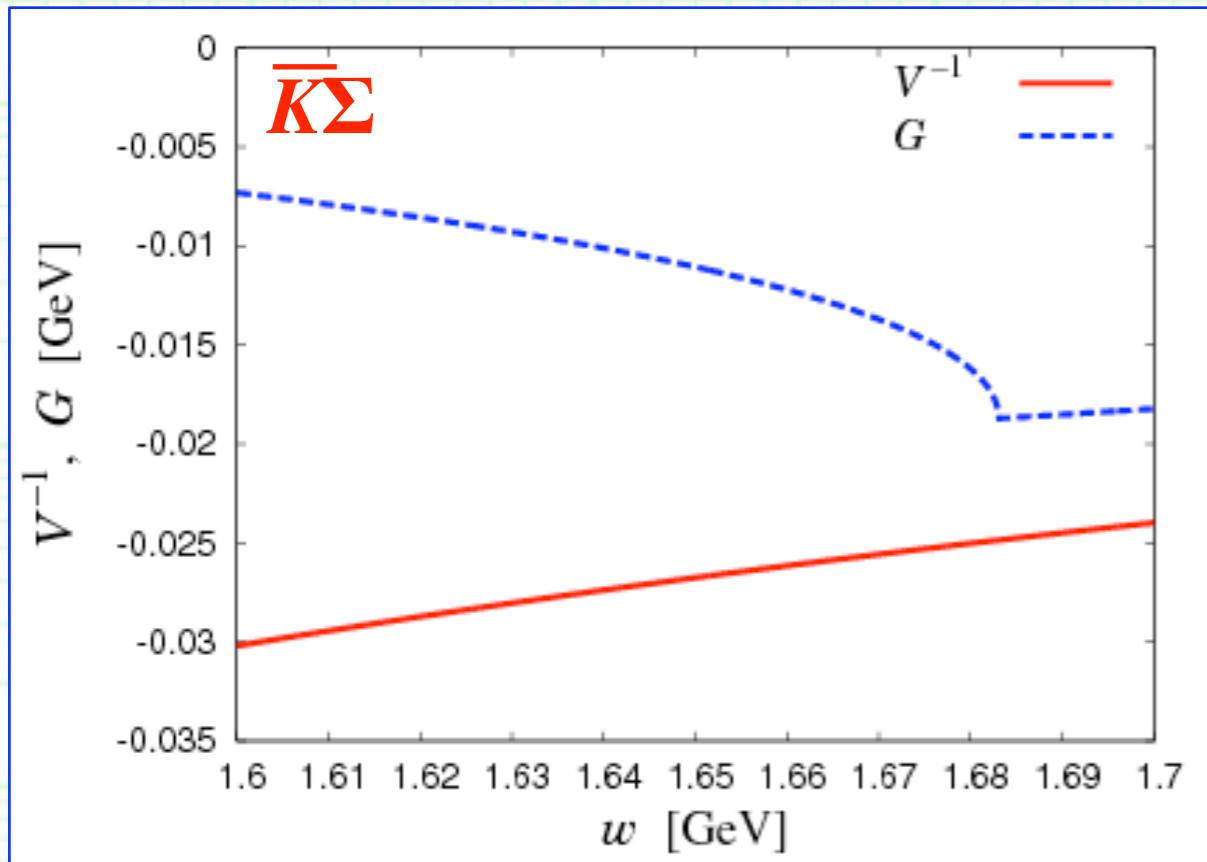
T. Hyodo and W. Weise,
Phys. Rev. C77 (2008) 035204.

(isospin basis)

4. Discussions

++ Origin of $\Xi(1690)$ ++

- We consider a $\bar{K}\Sigma(I=1/2)$ single channel problem (isospin basis), in which a bound state would appear at the energy of $V^{-1} = G$.



□ V^{-1} is below G , which means that the chiral $\bar{K}\Sigma$ interaction is attractive but not strong enough to generate a bound state in a single channel case.

--- In contrast to the $\bar{K}N(I=0)$ Int. , which can solely generate a bound state for $\Lambda(1405)$.

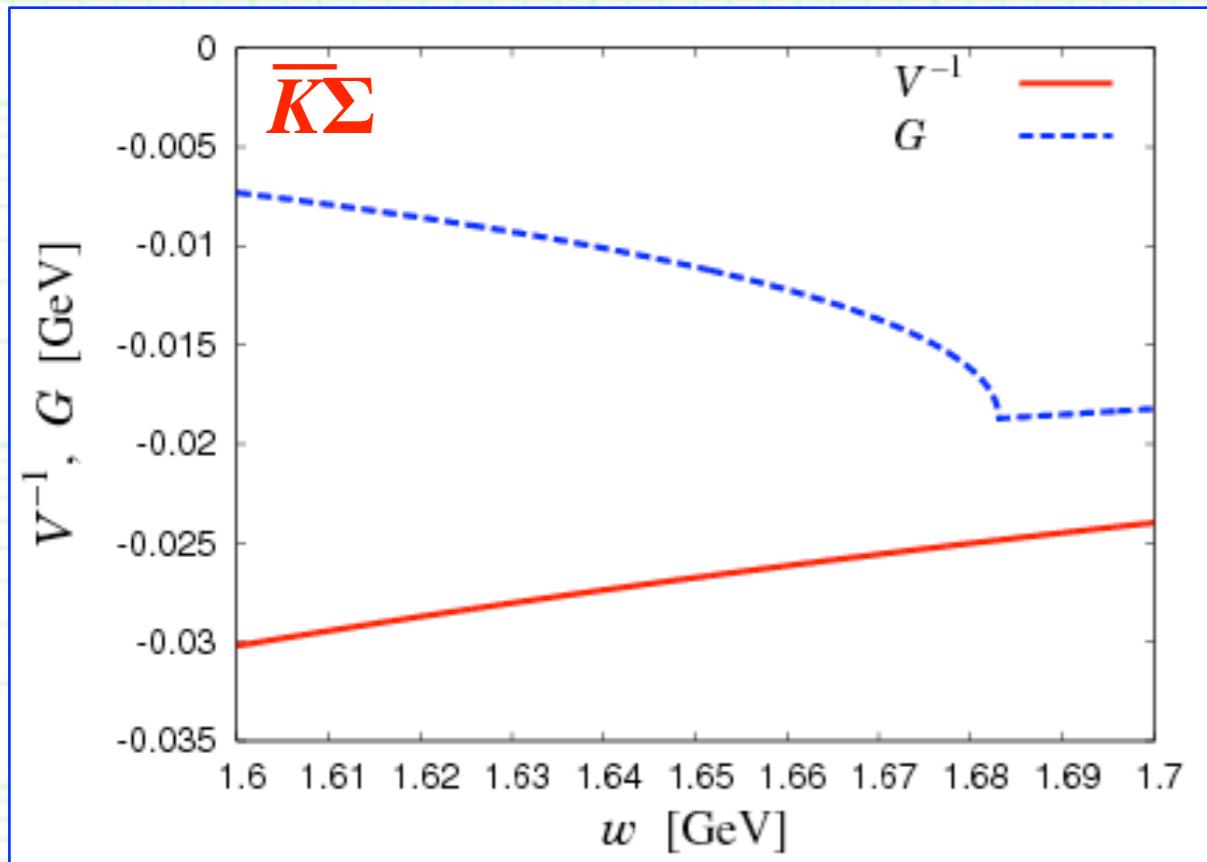
C_{jk}	$\bar{K}\Sigma$	$\bar{K}\Lambda$	$\pi\Sigma$	$\eta\Sigma$
$\bar{K}\Sigma$	2	0	$-1/2$	$3/2$
$\bar{K}\Lambda$	0	0	$-3/2$	$-3/2$
$\pi\Sigma$	$-1/2$	$-3/2$	2	0
$\eta\Sigma$	$3/2$	$-3/2$	0	0

C_{jk}	$\bar{K}N$	$\pi\Sigma$	$\eta\Lambda$	$K\Sigma$
$\bar{K}N$	3	$-\sqrt{3/2}$	$3/\sqrt{2}$	0
$\pi\Sigma$	$-\sqrt{3/2}$	4	0	$\sqrt{3/2}$
$\eta\Lambda$	$3/\sqrt{2}$	0	0	$-3/\sqrt{2}$
$K\Sigma$	0	$\sqrt{3/2}$	$-3/\sqrt{2}$	3

4. Discussions

++ Origin of $\Xi(1690)$ ++

- We consider a $\bar{K}\Sigma(I=1/2)$ single channel problem (isospin basis), in which a bound state would appear at the energy of $V^{-1} = G$.



- V^{-1} is below G , which means that the chiral $\bar{K}\Sigma$ interaction is attractive but not strong enough to generate a bound state in a single channel case.
 - In contrast to the $\bar{K}N(I=0)$ Int. , which can solely generate a bound state for $\Lambda(1405)$.

- This fact implies that the multiple scatterings, such as $\bar{K}\Sigma \rightarrow \eta \Xi \rightarrow \bar{K}\Sigma$, assist the $\bar{K}\Sigma$ interaction in dynamically generating $\Xi(1690)$ as a $\bar{K}\Sigma$ quasi-bound state which is located very close to the $\bar{K}\Sigma$ threshold.

4. Discussions

++ Comparison with previous ChUA calculations ++

- This discussion on $\bar{K}\Sigma$ interaction can be further utilized for **comparison of our result on $\Xi(1690)$ (pole at 1684.0 -- 0.6 i MeV) with previous ones in chiral unitary approach.**

$(\frac{1}{2}, -2)$		$[\pi \Xi]$	7.5	5.6	seen	2.6
$\Xi(1620)^*$		$[\bar{K}\Lambda]$	5.2	2.8	seen	-1.5
$M \approx 1620$	1565	$[\bar{K}\Sigma]$	0.7	2.6	0	-0.8
$\Gamma = 23$	247	$[\eta \Xi]$	0.3	4.9	0	0.3
$(\frac{1}{2}, -2)$		$[\pi \Xi]$	0.02	0.1	seen	-0.1
$\Xi(1690)^{***}$		$[\bar{K}\Lambda]$	0.16	6.0	seen	0.9
$M = 1690 \pm 10$	1663	$[\bar{K}\Sigma]$	5.15	3.1	seen	-2.5
$\Gamma = 10 \pm 6$	4	$[\eta \Xi]$	2.28	3.2	0	-1.7

\leftrightarrow **Qualitatively similar, but the mass (= real part of the pole position) of our result is 20 - 30 MeV larger than others.**

C. Garcia-Recio, M. F. M. Lutz and J. Nieves,
Phys. Lett. B582 (2004) 49.

8 (1134)	2037-24i	0.6	0.6	0.3	0.2	0.3	\uparrow 0.5	1.5	0.6	1.8	2.4	1.1	0.2	1.0	2.1	
10 (70)	1729-46i	0.6	1.4	0.4	\uparrow 1.6	1.4	2.1	1.0	0.4	3.3	1.5	0.4	0.2	1.6	1.0	$\Xi(1950)$ ***
8 (70)	1651-2i	0.2	0.3	\uparrow 2.2	1.3	1.0	2.6	0.2	0.6	0.9	0.4	0.2	1.7	0.4	0.2	$\Xi(1690)$ ***
8 (56)	1577-139i	2.6	\uparrow 1.7	0.5	0.1	0.8	1.0	0.7	0.1	0.6	1.3	0.3	0.1	0.2	1.2	$\Xi(1620)$ *

D. Gamermann, C. Garcia-Recio, J. Nieves and L. L. Salcedo, *Phys. Rev. D84* (2011) 056017.

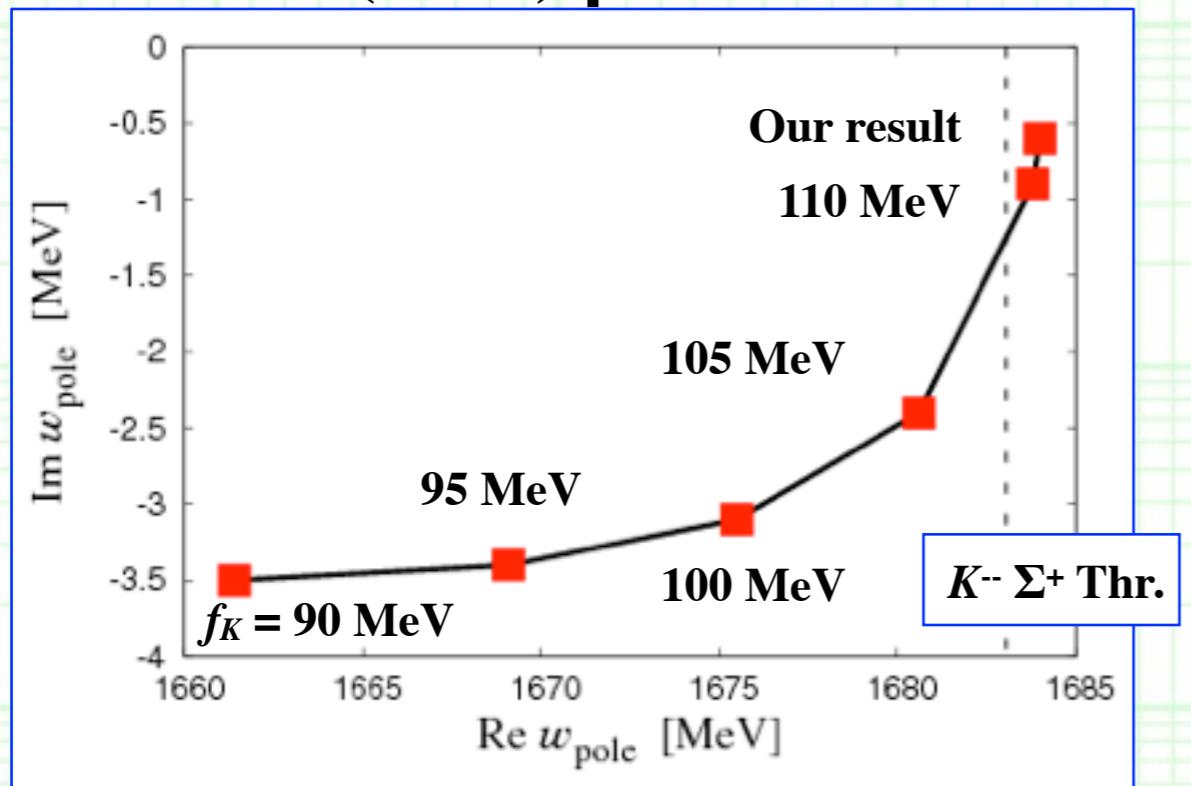
4. Discussions

++ Comparison with previous ChUA calculations ++

- This discussion on $\bar{K}\Sigma$ interaction can be further utilized for **comparison of our result on $\Xi(1690)$ (pole at $1684.0 - 0.6 i$ MeV) with previous ones in chiral unitary approach.**

- In Ref. [1] they used the meson decay constant $f = 90$ MeV in all channels, while we use their physical values ($f_K = 110.64$ MeV).

--> The $\Xi(1690)$ pole moves as:



- In Ref. [2] they introduced channels with vector mesons, which **would assist more** the $\bar{K}\Sigma$ interaction, and hence the mass of $\Xi(1690)$ shifted to lower energies.

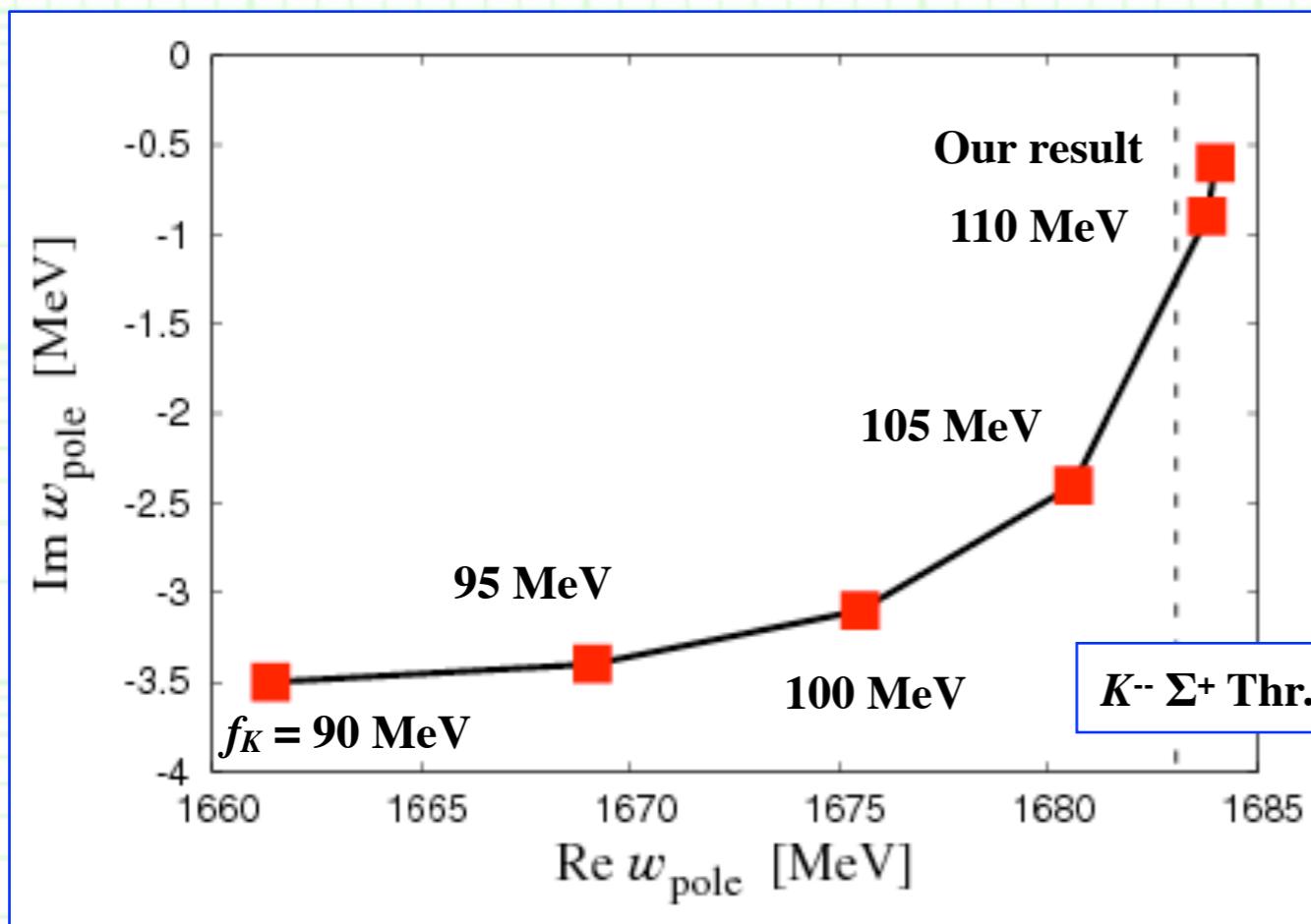
[1] C. Garcia-Recio, M. F. M. Lutz and J. Nieves, *Phys. Lett.* **B582** (2004) 49.

[2] D. Gammermann, C. Garcia-Recio, J. Nieves and L. L. Salcedo, *Phys. Rev.* **D84** (2011) 056017.

4. Discussions

++ Compositeness for $\Xi(1690)$ ++

- Our $\Xi(1690)$ pole exists at $1684.0 - 0.6 i$ MeV, whose real part is very close to the $K^- \Sigma^+$ threshold ($= 1863.1$ MeV).
- The pole exists in the first Riemann sheet of the $K^- \Sigma^+$ channel.



- Our $\Xi(1690)$ state should be genuinely $\bar{K}\Sigma$ composite !
(coupled-channels version)

- **“Theorem” (single channel):**
The bound state with the field renormalization const. $Z \sim 0$ naturally appears when the state exists near the threshold, and especially Z vanishes in the limit $B \rightarrow 0$.
--> The state should be genuinely composite.

T. Hyodo, *Phys. Rev. C90* (2014) 055208;
C. Hanhart, J. R. Pelaez and G. Rios,
Phys. Lett. B739 (2014) 375.

4. Discussions

++ Compositeness for $\Xi(1690)$ ++

- Our $\Xi(1690)$ pole exists at $1684.0 - 0.6i$ MeV, whose real part is very close to the $K^- \Sigma^+$ threshold ($= 1863.1$ MeV).
- The pole exists in the first Riemann sheet of the $K^- \Sigma^+$ channel.
- Its $\bar{K}\Sigma$ component can be measured in terms of the compositeness, which is defined as the contribution of the two-body component to the normalization of the total wave function.

Hyodo, *Int. J. Mod. Phys. A* **28** (2013) 1330045; T. S. , Hyodo and Jido, *PTEP* (2015) in press [arXiv:1411.2308].

$$\langle \Psi^* | \Psi \rangle = \sum_j X_j + Z = 1$$

$$X_j = -g_j^2 \left[\frac{dG_j}{dw} \right]_{w=w_{\text{pole}}} , \quad Z = - \sum_{j,k} g_k g_j \left[G_j \frac{dV_{jk}}{dw} G_k \right]_{w=w_{\text{pole}}}$$

$X_{K^-\Sigma^+}$	$0.84 - 0.27i$
$X_{\bar{K}^0 \Sigma^0}$	$0.11 + 0.15i$
$X_{\bar{K}^0 \Lambda}$	$-0.01 + 0.01i$
$X_{\pi^+ \Xi^-}$	$0.00 + 0.00i$
$X_{\pi^0 \Xi^0}$	$0.00 + 0.00i$
$X_{\eta \Xi^0}$	$0.01 + 0.02i$
Z	$0.06 + 0.09i$

- From the result of compositeness, the $\bar{K}\Sigma$ compositeness really dominates the sum rule with small imaginary part.
- > Strongly indicates that $\Xi(1690)$ is indeed a $\bar{K}\Sigma$ molecular state.

4. Discussions

++ Small decay width ++

- One more remarkable property of $\Xi(1690)^0$ is its very small width:

$$\Gamma = -2 \operatorname{Im}(w_{\text{pole}}) \sim 1 \text{ MeV.}$$

- This can be naturally understood by considering the structure of the coefficient C_{jk} .

1. Transition of $\bar{K}\Sigma \leftrightarrow \bar{K}\Lambda$ is forbidden at the leading order ($C_{jk} = 0$), so the decay of the $\bar{K}\Sigma$ quasi-bound state to the $\bar{K}\Lambda$ channel is **highly suppressed**.

C_{jk}	$\bar{K}\Sigma$	$\bar{K}\Lambda$	$\pi\Sigma$	$\eta\Sigma$
$\bar{K}\Sigma$	2	0	$-1/2$	$3/2$
$\bar{K}\Lambda$	0	0	$-3/2$	$-3/2$
$\pi\Sigma$	$-1/2$	$-3/2$	2	0
$\eta\Sigma$	$3/2$	$-3/2$	0	0

2. In addition, $\bar{K}\Sigma \leftrightarrow \pi\Sigma$ is not strong compared to, e.g., $\bar{K}N(I=0) \leftrightarrow \pi\Sigma$.

--- $C_{jk} = -0.5$ vs. $-\sqrt{1.5} = 1.22 \dots$

--> As a consequence, $\Xi(1690)$ as a $\bar{K}\Sigma$ molecule cannot couple strongly to $\bar{K}\Lambda$ nor $\pi\Sigma$.

($I = 1/2$, isospin basis)

C_{jk}	$\bar{K}N$	$\pi\Sigma$	$\eta\Lambda$	$K\Sigma$
$\bar{K}N$	3	$-\sqrt{3/2}$	$3/\sqrt{2}$	0
$\pi\Sigma$	$-\sqrt{3/2}$	4	0	$\sqrt{3/2}$
$\eta\Lambda$	$3/\sqrt{2}$	0	0	$-3/\sqrt{2}$
$K\Sigma$	0	$\sqrt{3/2}$	$-3/\sqrt{2}$	3

--- This leads to small decay width and tiny branching fraction to $\pi\Sigma$.

4. Discussions

++ Charged $\Xi(1690)$ ++

- Finally we consider the charged $\Xi(1690)$ in the same parameter set as the neutral one. As a result, we obtain the $\Xi(1690)^-$ pole as:

w_{pole}	$1692.5 - 10.7i$ MeV
$X_{\bar{K}^0\Sigma^-}$	$0.87 - 0.51i$
$X_{K^-\Sigma^0}$	$-0.33 + 0.36i$
$X_{K^-\Lambda}$	$0.00 + 0.04i$
$X_{\pi^-\Xi^0}$	$0.00 + 0.00i$
$X_{\pi^0\Xi^-}$	$0.00 + 0.00i$
$X_{\eta\Xi^-}$	$0.07 + 0.02i$
Z	$0.39 + 0.09i$

- The $\Xi(1690)^-$ pole is located between the $K^-\Sigma^0$ and $\bar{K}^0\Sigma^-$ thresholds; The pole is in the first Riemann sheet of the $\bar{K}^0\Sigma^-$ and $\eta\Xi^-$ channels and in the second Riemann sheet of the $K^-\Lambda$, $K^-\Sigma^0$, $\pi^-\Xi^0$, and $\pi^0\Xi^-$ channels.

- The pole position has a larger imaginary part ~ 10 MeV compared to the neutral case, since it exists above the $\bar{K}^0\Sigma^-$ threshold in its second Riemann sheet and hence the decay to $\bar{K}^0\Sigma^-$ is allowed.
- Although both $X_{K^0\Sigma^-}$ and $X_{K^-\Sigma^0}$ have large imaginary part, sum of them is the dominant contribution with its small imaginary part, which implies that the $\Xi(1690)^-$ state is also a $\bar{K}\Sigma$ molecular state.

5. Summary and outlook

++ Summary ++

- We have investigated **dynamics of $\bar{K}\Sigma$ and its coupled channels in the chiral unitary approach.**
 - We employ the simplest interaction: Weinberg-Tomozawa term.
 - Subtraction constants as free parameters are fixed by fitting the $\bar{K}^0\Lambda$ and $K^-\Sigma^+$ mass spectra to the experimental data.
- As a result, we have found that:
 - The obtained scattering amplitude can qualitatively reproduce the experimental data of the $\bar{K}^0\Lambda$ and $K^-\Sigma^+$ mass spectra.
 - **Dynamically generates a Ξ^* pole near the $\bar{K}\Sigma$ threshold as a $\bar{K}\Sigma$ molecule**, which can be identified with the $\Xi(1690)^0$ resonance.
 - However, the $\bar{K}\Sigma$ interaction alone is slightly insufficient to bring a $\bar{K}\Sigma$ bound state, so multiple scattering is important for $\Xi(1690)$.
 - The small or vanishing couplings of the $\bar{K}\Sigma$ channel to others can naturally explain small decay width of $\Xi(1690)$.

5. Summary and outlook

++ Outlook ++

■ Theoretical study:

- Propose reactions which can clarify properties of the $\Xi(1690)$ resonance in experiments, both neutral and charged states.
- Predict the $\Xi(1690)$ production cross section.
- Improvement of model by, *e.g.* , introducing s - and u -channel Born terms.

■ Experimental study:

- **Determine J^P of the $\Xi(1690)^0$ resonance.**
- **Measure the $\bar{K}^0\Lambda$ and $K^-\Sigma^+$ mass spectra and ratio of their branching fractions.**
- Furthermore, precise determination of its pole position should be important to discuss the internal structure of $\Xi(1690)$.
--- Flatte parameterization may be necessary since it exists near the $\bar{K}\Sigma$ threshold.

**Thank you very much
for your kind attention !**