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Introduction
➢  In this work, we study the possible consequences of 
Heavy Quark Symmetries (HQS) in relation with the 
existence of exotic mesonic molecules composed of a 
heavy-light meson and a heavy-light antimeson.

➢  These molecular systems were first theorized in the 
70s (Voloshin, Okun; 1976)

➢   These molecular systems, not discarded by QCD, are 
not usually included in conventional quark models, where 
only mesons and baryons are allowed. 
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Introduction
➢   There have been numerous experimental resonances 
which have been given a molecular interpretation. 
Among all of them, the most important one is the 
X(3872)  resonance. The molecular interpretation of this 
resonance has a capital importance in this work.

➢ Other important resonances with a mandatory exotic 
interpretation are the Z

b
(10610)/Z

b
(10650). 

➢  Thanks to the high degree of symmetry these 
composite systems present, the formulation of an 
Effective Field Theory (EFT) that respects both HQS and 
chiral symmetry seems natural.



  

Diagramatic representation of a heavy meson-antimeson molecular system

Meson-Antimeson Molecules
Part 1:    Formulation of the EFT



  

Meson-Antimeson Molecules

● The mass of the heavy 
(anti-)quark in the 
(anti-)meson.

● The size of the mesons.
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Meson-Antimeson Molecules

● The mass of the heavy 
(anti-)quark in the 
(anti-)meson.

● The size of the mesons.

● The meson-antimeson 
distance (order Λ

QCD
)

● The total momentum of 
the molecular system.
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Symmetries
➢   Our approach for the study of heavy mesonic 
molecular systems will be based on,

➢ Heavy Quark Spin Symmetry (HQSS).  the 
dynamics is invariant under separate spin 
rotations of the heavy quark and antiquark.

➢ Heavy Flavour Symmetry (HFS). Spectrum in 
the charm sector must be similar to the 
spectrum in the bottom sector. 

➢ Heavy Antiquark-Diquark Symmetry 
(HADS).  Heavy diquark behaves as a heavy 
antiquark.
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Symmetries
➢   Our approach for the study of heavy mesonic 
molecular systems will be based on,

➢ Chiral symmetry  contains pion exchange 
interactions.

➢ SU(3)-light flavour symmetry: Heavy 
molecules also come in SU(3)-light flavour 
multiplets.

Part 1:    Formulation of the EFT

-  HQS has a spin-flavour SU(2N
h
) symmetry.

-  HQET eigenstates are "would-be" hadrons composed 
by a heavy quark with light antiquarks and gluons, 
which, assuming SU(3) light-flavour symmetry, will be 
described into triplets, e.g. D = (D0,D+,D

s
)



  

EFT Lagrangian
➢   At Leading Order, the most general potential that 
respects HQSS takes the form,

➢     It only depends on four Low Energy Constants. From 
now on, we refer to the LECs as C

0a
, C

0b
, C

1a
 and C

1b
.
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Lippmann-Schwinger Equation
➢   Once we have determined V, we find bound states by 
solving the LSE equation for each spin, isospin and 
charge-conjugation sector:

➢    Bound states of this model will appear as poles in the 
T-matrix.
➢  Ultraviolet divergences are regularized/renormalized 
introducing a Gaussian regulator Λ:
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Determination of the LECs
➢   To determine the LECs, we have made use of the 
following assumptions.

➢ X(3917) is a D*D* bound state with JPC = 0++.
➢ Y(4140) is a D*

s
D

s
* bound state with JPC = 0++.

➢ X(3872) is DD* bound state with JPC = 1++.
➢ The fourth condition will be obtained from the 

''isospin violation'' observed in the X(3872) decays.
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Isospin Violation in the X(3872)
➢   It has been difficult to understand the X(3872) decay 
widths in different isospin channels. In fact, if X(3872) 
had a well defined isospin, it would be hard to 
accomodate the following experimental ratio:
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➢   To explain this ratio there are two different scenarios:
➢   X(3872) isospin is well defined but then isospin is 

not conserved in these strong decays.
➢  X(3872) isospin is not well defined and strong 

interactions conserve isospin.   
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➢   To explain this ratio there are two different scenarios:
➢   X(3872) isospin is well defined but then isospin is 

not conserved in these strong decays.
➢  X(3872) isospin is not well defined and 

strong interactions conserve isospin. 



  

Isospin Violation in the X(3872)
➢  A more detailed analysis of the X(3872) decays 
(Hanhart et al. 2012) gives the ratio between the 
amplitudes of the decays taking into account the different 
widths of the intermediate vector bosons ρ and ω:

Part 1:    Formulation of the EFT

➢    In our effective model, these processes are described 
by the following diagram.



  

Isospin Violation in the X(3872)
➢   Then, the same ratio R

X
 is given by,
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Being ψ
1
 and ψ

2
 an average of the neutral and charged 

DD* wave functions in the vicinities of the origin and,

Gamermann et al., PRD81(2010) 014029)



  

Isospin Violation in the X(3872)
➢   Assuming SU(3) light flavour symmetry and the OZI 
rule (ss pair creation is suppressed) hold, we get 
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➢   If we now assume a vanishing DD*
 interaction in the 

isovector sector, it is found that the ratio R
X

 only depends 
on the mass of the resonance and the thresholds of the 
different channels (Gamermann et al., PRD81(2010) 
014029) and takes the value: R

X
 ~ 0.13.



  

Isospin Violation in the X(3872)
➢   We improve on this, and consider a non-vanishing I  = 1 
interaction that we fit to the value for R

X
 reported by 

Hanhart et al. Hence, we work with a coupled channel 
(neutral and charged channels) contact potential:
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being V
0
 and V

1 
the well defined isospin potentials with I 

= 0 and I = 1, respectively.

➢  Therefore, the experimental ratio of the ρ and ω decay 
widths of the X(3872) provides further constraints to the 
counter-terms.



  

Predictions of HQSS partners.
➢  Thus, we have determined the value of the four 
different counter-terms  and we can predict a whole family 
of resonances related (SU(3) and HQSS partners) to the 
X(3872), X(3915) and Y(4140).

➢    We have used two different values of the regulator Λ 
to account for the regulator-dependence of the 
predictions. The two values chosen has been 0.5 and 1.0 
GeV to guaranty that the involved momenta are 
reasonably smaller than the heavy quark mass. The 
relation between the Gaussian regulator and the counter-
terms C(Λ) is very similar to RGE of other field theories. 
Predictions (bound states), though, should be Λ-
independent
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Predictions of HQSS partners.
Part 1:    Formulation of the EFT

➢   The I = 0 without the hidden-strangeness sector,



  

Predictions of HQSS partners.
Part 1:    Formulation of the EFT

➢   The I = 0 with hidden-strangeness sector,

 New Predictions!



  

Predictions of HQSS partners.
Part 1:    Formulation of the EFT

➢   The I = ½ sector,

 New Predictions!



  

Predictions of HQSS partners.
Part 1:    Formulation of the EFT

➢   The I = 1 sector

 New Predictions!



  

Conclusions
➢  Light flavour symmetry and HQSS in heavy meson-
antimeson systems, along  with the determination of four 
LECs, provides a systematic study of a whole family of 
hidden charm molecules.
➢  Uncertainties quoted in tables only account for the 
approximate nature of HQSS (~15% error) and those 
induced by the errors of R

X
.

➢  Pion exchanges and coupled channels should be 
considered. However, according to previous studies, these 
effects are small and smaller than those expected from 
HQSS breaking terms.
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Part 2

The EFT in a finite volume

M. Albaladejo, C. Hidalgo-Duque, J. Nieves, E. Oset
Phys.Rev. D88 (2013) 1, 014510  



  

LQCD
➢  Since QCD is non-perturbative at low energies, 
perturbative methods cannot be directly used. LQCD 
computes path integrals in a finite volume. This formalism 
allows the analysis of QCD at low energies.

➢ There exists a connection between LQCD with the 
infinite volume real world. The Lüscher method 
[C.Mat.Phys., 105,153(’86); NP,B354,531(’91)] translates 
energy levels calculated in LQCD to hadron-hadron phase 
shifts of binding energy. (See A. Ramos talk)

➢  This method was generalized and simplified in [Döring 
et al., EPJA47, 139 (2011)].

Part 2:    The EFT in a finite volume



  

(Generalized) Lüscher approach
➢  In a finite box (with periodic bound conditions), 
momenta are quantized.

➢  It is possible to rewrite the amplitude in the box by 
replacing the integrals by sums (see e.g. [Döring, Meiβner, 
Oset, Rusetsky, EPJ,A47, 139 (2011)]). In our EFT model,
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(Generalized) Lüscher approach
➢  Therefore, the energy levels in a finite volume are given 
by, 

➢  The relation of the finite volume amplitude with its 
infinite volume counter-part reads then (notice the explicit 
dependence on the cutoff),

➢    The Lüscher formula is recovered when Λ  ∞:→
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(Generalized) Lüscher approach
➢  A very useful way to compute the Lüscher function is 
then obtained.  
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➢  For a finite Λ,  



  

The EFT in a finite box
Part 2:    The EFT in a finite volume

➢  Attractive potentials 
generate energy levels. 
Are they bound states?

➢ There are some cases 
where the answer is 
clear but others are 
more uncertain.

➢  Algorithms to analyze 
the energy levels are 
then required. 
 INVERSE PROBLEM



  

Inverse Analysis
Part 2:    The EFT in a finite volume

➢  We generate ''synthetic'' levels of energy.

➢ Three algorithms are tested in two cases, the DD with JPC 
= 0++ and the D*D* with JPC = 2++: 

● The phase shift analysis (level above threshold).
● A potential fit (above and below threshold).
● An effective range analysis (above and below 

threshold). 



  

I.A.: Phase Shifts (DD, 0++)
Part 2:    The EFT in a finite volume

➢  Lüscher method transforms energy levels (E
n
) into 

phase shifts δ(E
n
)



  

I.A.: Potential fit (DD, 0++)
Part 2:    The EFT in a finite volume

More accurate predictions!

Similar results with  
 different regulators!

➢ Lorentzian Regulator:

➢ Relativistic amplitude, once 
subtracted dispersion relation



  

I.A.: Effective Range (DD, 0++)
Part 2:    The EFT in a finite volume

➢ We parameterize 
the amplitude as,



  

Inverse Analysis: (D*D*, 2++)
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Conclusions II
➢  The interaction in a finite volume produces energy 
levels (above and below threshold). These predictions can 
be tested in LQCD.
➢  We have studied the inverse problem: analyze the 
generated energy levels with different methods. Standard 
phase-shifts analysis, potential analysis, effective range 
analysis. Particular emphasis is done in the error analysis.
➢    ER and potential analyses work best (though ER may 
be limited to near threshold energies).
➢    We focus on two I = 0 different channels: DD  with JPC 
= 0++ and D*D* with JPC = 2++.
➢    An efficient method to compute the Lüscher function is 
also presented.
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