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Introduction

- In this work, we study the possible consequences of
Heavy Quark Symmetries (HQS) in relation with the
existence of exotic mesonic molecules composed of a
heavy-light meson and a heavy-light antimeson.

- These molecular systems were first theorized in the
/0s (Voloshin, Okun; 1976)

- These molecular systems, not discarded by QCD, are
not usually included in conventional quark models, where
only mesons and baryons are allowed.
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Introduction

- There have been numerous experimental resonances
which have been given a molecular interpretation.
Among all of them, the most important one is the
X(3872) resonance. The molecular interpretation of this
resonance has a capital importance in this work.

~ Other important resonances with a mandatory exotic
interpretation are the Z (10610)/Z (10650).

- Thanks to the high degree of symmetry these
composite systems present, the formulation of an
Effective Field Theory (EFT) that respects both HQS and
chiral symmetry seems natural.
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Meson-Antimeson Molecules

Diagramatic representation of a heavy meson-antimeson molecular system
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Meson-Antimeson Molecules

* The mass of the heavy
(anti-)quark in  the
(anti-)meson.

* The size of the mesons.
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Meson-Antimeson Molecules

* The mass of the heavy * The meson-antimeson
(anti-)quark in  the distance (order A_ )

QCD

(anti-)meson.  The total momentum of
* The size of the mesons. the molecular system.
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Symmetries

> Our approach for the study of heavy mesonic
molecular systems will be based on,

- Heavy Quark Spin Symmetry (HQSS). the
dynamics is invariant under separate spin
rotations of the heavy quark and antiquark.

- Heavy Flavour Symmetry (HFS). Spectrum in
the charm sector must be similar to the
spectrum in the bottom sector.

- Heavy Antiquark-Diquark Symmetry
(HADS). Heavy diquark behaves as a heavy
antiquark.
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Symmetries

> Our approach for the study of heavy mesonic
molecular systems will be based on,

- Chiral symmetry contains pion exchange
interactions.
- SU(3)-light flavour symmetry: Heavy
molecules also come in SU(3)-light flavour
multiplets.

- HQS has a spin-flavour SU(2N ) symmetry.

-  HQET eigenstates are "would-be" hadrons composed
by a heavy quark with light antiquarks and gluons,
which, assuming SU(3) light-flavour symmetry, will be
described into triplets, e.g. D = (D°,D*,D)
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EFT Lagrangian

- At Leading Order, the most general potential that
respects HQSS takes the form,

7 [5(Q H(Q)%] T [H(@) ,z,:(c'::),}#] g:

Tr Hg@/\;ng@%] Tr [H(
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~ It only depends on four Low Energy Constants. From

now on, we refer to the LECs as C. C.C. and C,.-
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Lippmann-Schwinger Equation

- 0Once we have determined V, we find bound states by
solving the LSE equation for each spin, isospin and
charge-conjugation sector:

fI=¥Y+¥VGEi

FITIE) =BV + [

- Bound states of this model will appear as poles in the
T-matrix.

- Ultraviolet divergences are regularized/renormalized
introducing a Gaussian regulator A:

<ﬁ1 V‘ﬁ f> e V(ﬁ,ﬁ f) — 6_52/,:\2 e_ﬁrz/ﬂi s ¢ = f (d3f<' ;

3
27)° E—my—my— é‘—p

gt
o= 2R3 /A




Part 1: Formulation of the EFT

Determination of the LECs

- To determine the LECs, we have made use of the
following assumptions.

- X(3917) is a D'D" bound state with J°¢ = 0**.
- Y(4140) isa D D bound state with J° = 0*".

- X(3872) is DD’ bound state with J°¢ = 1*+,
- The fourth condition will be obtained from the
"isospin violation" observed in the X(3872) decays.
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Isospin Violation in the X(3872)

- It has been difficult to understand the X(3872) decay
widths in different isospin channels. In fact, if X(3872)
had a well defined isospin, it would be hard to
accomodate the following experimental ratio:

L

+_— 0
B(X(3872) > J/¢¥ n'n jr ) OB LS,
B(X(3872) —» J/¢ wrm )
\—\’_/

P

- To explain this ratio there are two different scenarios:
- X(3872) isospin is well defined but then isospin is
not conserved in these strong decays.
- X(3872) isospin is not well defined and strong
interactions conserve isospin.
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Isospin Violation in the X(3872)

- A more detailed analysis of the X(3872) decays
(Hanhart et al. 2012) gives the ratio between the
amplitudes of the decays taking into account the different
widths of the intermediate vector bosons p and w:

_ MX = J/4p)
 M(X = )P w)

~In our effective model, these processes are described
by the following diagram.

0.08
— 0.26J_r0_05

Rx
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Isospin Violation in the X(3872)

- Then, the same ratio R is given by,

*TMX I w) T 8 \ D+ 0
Being y, and y, an average of the neutral and charged

DD" wave functions in the vicinities of the origin and,
go = My(DD*(I = 0) = J/¢ w) g = M,(DD*(1=1) = J/V p)

R - MX 2 J/Yp) _ & (&1 1:52)

Jhy

®, p

Gamermann et al.,, PRD81(2010) 014029)
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Isospin Violation in the X(3872)

- Assuming SU(3) light flavour symmetry and the OZI
rule (ss pair creation is suppressed) hold, we get

Sw — 8p

= Rx

T MX = W) \ D+ b

- If we now assume a vanishing DD" interaction in the
isovector sector, it is found that the ratio R only depends

on the mass of the resonance and the thresholds of the
different channels (Gamermann et al., PRD81(2010)
014029) and takes the value: R ~ 0.13.

MO0 (525) _onugy
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Isospin Violation in the X(3872)

- We improve on this, and consider a non-vanishing I = 1
interaction that we fit to the value for R reported by

Hanhart et al. Hence, we work with a coupled channel
(neutral and charged channels) contact potential:

1(VU—|—V1 Vovl)

Vcoupfed = VO o Vl VO if Vl

2
being V_ and V, the well defined isospin potentials with I
= 0and I = 1, respectively.

- Therefore, the experimental ratio of the p and w decay
widths of the X(3872) provides further constraints to the
counter-terms.
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Predictions of HQSS partners.

- Thus, we have determined the value of the four
different counter-terms and we can predict a whole family
of resonances related (SU(3) and HQSS partners) to the
X(3872), X(3915) and Y(4140).

- We have used two different values of the regulator A
to account for the requlator-dependence of the
predictions. The two values chosen has been 0.5 and 1.0
GeV to gquaranty that the involved momenta are
reasonably smaller than the heavy quark mass. The
relation between the Gaussian regulator and the counter-
terms C(A) is very similar to RGE of other field theories.
Predictions (bound states), though, should be A-
independent




Part 1:

Formulation of the EFT

Predictions of HQSS partners.

>

The I = 0 without the hidden-strangeness sector,

QS+1LJ

Ve

E (A =05 GeV)

E (A=1GeV)

Exp [7]

Threshold [MeV]

OUa,

37007,

12
A5

3734.5°

V::oupied
Coa — Cop

Input
381512

Input
3821

3871.6

3871.8/3879.9
3875.9"

Coa — 2 Cop
Coa — Cop

V;:oupied

Input
30551 12
401311,

Input
3958122
401311,

3917
3942

4017.3
4017.3°
4014.0/4020.6
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Predictions of HQSS partners.

>

The I = 0 with hidden-strangeness sector,

QS-I-ILJ

Ve

E (A=05 GeV)

E (A=1GeV)

Threshold [MeV]

l(O{]ﬂ, T Ola)

3924110

309819,

3937.0

(Coa + C1a+Cop + Cp)
(Coa + C1a — Cop — C1p)

403512

404073

4080.8

L
2
L
2
L
30
Lic,
2
L
2

00 + Cra — 2Cgp — 2 Chp)
(Coa + C1a — Cop — Cp)
(Coa + Cra + Cop + Cp)

Input
41771@%

Input
4180J_fig

4224.6
4224.6

New Predictions!
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Predictions of HQSS partners.

- The I = 1> sector,

ey U E (A=1GeV) Threshold [MeV]
s 83T 3838.1
V. 3057122 3077.151,3979.551

Oiii— 20 406115 112091
Cra - C 4120.91
C1a+ Cu

New Predictions!




Part 1: Formulation of the EFT

Predictions of HQSS partners.

> The I = 1 sector

B Ve |E(A=05GeV)|E (A=1GeV) Threshold [MeV]
Cis 5, 37T 3734.5
L)::oupled - -
Cie ~Cr 3848112 3857125 3875.9"
Cio—2C| 395315 3960131 4017.3*
Oz =G 3088112 3905+, 4017.3*
V;:oupled - -

New Predictions!
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Conclusions

- Light flavour symmetry and HQSS in heavy meson-
antimeson systems, along with the determination of four
LECs, provides a systematic study of a whole family of
hidden charm molecules.

- Uncertainties quoted in tables only account for the
approximate nature of HQSS (~15% error) and those
induced by the errors of R,

- Pion exchanges and coupled channels should be
considered. However, according to previous studies, these
effects are small and smaller than those expected from
HQSS breaking terms.
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Phys.Rev. D88 (2013) 1, 014510
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LQCD

- Since QCD is non-perturbative at low energies,
perturbative methods cannot be directly used. LQCD
computes path integrals in a finite volume. This formalism
allows the analysis of QCD at low energies.

- There exists a connection between LQCD with the
infinite volume real world. The Ldscher method
[C.Mat.Phys., 105,153('86); NP,B354,531('91)] translates
energy levels calculated in LQCD to hadron-hadron phase
shifts of binding energy. (See A. Ramos talk)

- This method was generalized and simplified in [Doring
et al., EPJA47, 139 (2011)].
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(Generalized) Luscher approach

- In a finite box (with periodic bound conditions),
momenta are quantized.

G=2n nel’

- It is possible to rewrite the amplitude in the box by
replacing the integrals by sums (see e.g. [Doring, Meifner,
Oset, Rusetsky, EPJ,A47, 139 (2011)]). In our EFT model,

TYE)=V~(E) - G(E)
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T YE)= V }(E) - G(E)
—2( g

G(E) =
() L3ZE {1t — Il 2—q2/2p

q
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(Generalized) Luscher approach

- Therefore, the energy levels in a finite volume are given

e

by, T"Y(E,) =0

- The relation of the finite volume amplitude with its
infinite volume counter-part reads then (notice the explicit
dependence on the cutoff),

T HE)=V'-G=G-Goxe )

> The Luscher formula is recovered when A — oo:

.« L (27) , kL
VarZp(1, k*) = — 5G k® =
wkeoll, ) 2T 2u L(E), N(27ﬂ2

5GL — |im/\_m<;j G-G
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(Generalized) Luscher approach

- A very useful way to compute the Lischer function is
then obtained.

=272 k%) /A2
G(E;A) = G(E;\) - ( Yo fh}a) :

B2 id0
E—E-HD

o= 2@ k)N _
(LEZ ./ ) +10+

5GA(EN)

> For a finite A,

A2p2

§G(E;N) = 6GL(E) + 2, e 3 {1+2(“2

(27)3/2  AL? [2A2




Part 2: The EFT in a finite volume

The EFT |n a finite box

=

4050 [
4000 |
3950
3900

S ggng
QL -

=

3800 F
3750 £

3700 F

3600 "o

:4— 1+_

. o+ p'pr » Afttractive potentials

generate energy levels.
D'D" Are they bound states?

=it DD
«1++ pp ~ There are some cases

where the answer is

+— D*D
DD clear but others are

more uncertain.

3650

-~ Algorithms to analyze
the energy levels are
then required.

INVERSE PROBLEM
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Inverse Analysis

3900 -
3850
3800

3750 |-

3700 |-

3650

3600

- Three algorithms are tested in two cases, the DD with J™
= 0** and the D'D" with J° = 2**:
* The phase shift analysis (level above threshold).
* A potential fit (above and below threshold).
* An effective range analysis (above and below
threshold).
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|.LA.; Phase Shlfts (DD 0*)

3900

3850

3800

e e -

3700

3650

3600_...\I..\.I.\..I....\...\I..\.

Potential fit
Mod 1
Synthet

ey . Free Eneg it

c data |—e—o |

1

1.5 2

2.5 3 3.5

Synthetic Data +——e—1
Potential T3

Effective Range 231008

4 3740 3760 3780 3800 3820 3840 3860 3880 3900

E (MeV)

> Luscher method transforms energy levels (E ) into
phase shifts o(E )

kcotd = = - 1r}f{2

1
2

g
1 A—oo

— —= |lim Re (E(E) —G(E)

):

Observable

Analysis

Theory

a (fm)
r (fm)
M (MeV)

16155
0.5340.18
3721

1.38
0.52
3715

Zoo(1, k)

4
VarlL
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I A.. Potentlal f|t (DD 0*)

Potential fit

Model ‘ Observable ~ Analysis ~ Theory

' Coo (fm?)  —1.087%%  —1.024
A(GeV)  0.97+0.13  1.00
M (MeV)  3715%; 3715

- More accurate predictions!

S— - Lorentzian Regulator:

r Synthetic data —e—— |
3850 Lorentz regulator ---.---

I e | 2 2\ 2
- o U o V/ SN S )

I , 0---- q2 + A2
3750

ool .~ Relativistic amplitude, once
. subtracted dispersion relation

3600 - - _ - V_a—i—bk2

o : 16726 = a + log ™ — o(s)|
Similar results with G =@+ lagie —ib(s) 168

different regulators!

a(s)—1
o(s)+1
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l.LA.: Effective Range (DD, 0**)

0.8

> We parameterize
the amplitude as,

0.7

1, &
—rk )
+2

Both Levels
Phase Shift Analysis
Theory =
|

|
0.6 0.7 0.8

1/a (fm™")

Phase shift and Eff. Range Potential
Phases Eff. Range Par. Analysis

h e Coa (fm?)  —1.08707%
0.5340.18  0.56 +0.07 A (GeV)  0.974+0.13
Gl 37167 M (MeV) 371573
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Inverse Analysis: (DD, 2**)

N e N L LINES I LINEC I
Potential Fit C— I ' ]
Model ] Synthetic data —e— |

Synthetic data ——y 30 & Potential T |
7 iy Effective Range [ |

Threshold ----- ] -

S N S S B .
4020 4040 4060 4080 4100 4120 4140
Lm, E (MeV)

Phase shift and Eff. Range Potential
Phases Eff. Range  Theory : Analysis

12.4 29 140.19
D424 JigH20 3.0 Shr

0.67£0.19 0.64+£0.15 0.58 1.20 £0.24
4014.2753  4014.6
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Conclusions li

- The interaction in a finite volume produces energy
levels (above and below threshold). These predictions can
be tested in LQCD.

- We have studied the inverse problem: analyze the
generated energy levels with different methods. Standard
phase-shifts analysis, potential analysis, effective range
analysis. Particular emphasis is done in the error analysis.
- ER and potential analyses work best (though ER may
be limited to near threshold energies). B

- We focus on two I = 0 different channels: DD with J™
= 0" and D'D" with J© = 2**,

- An efficient method to compute the Lischer function is
also presented.
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