

Di-baryons with and without Strangeness

Makoto Oka

*Tokyo Institute of Technology
and
ASRC, JAEA*

Valencia, June 16, 2015

Japan Atomic Energy Agency (JAEA) @ Tokai J-PARC (High Intensity Proton Accelerator)

Tokyo Institute of Technology
The largest National University in Science and Technology

Contents

1. Pauli principles and Spin dependence
2. H di-baryon
3. From ABC to d*
4. $D_\Delta = (\Delta\Delta)_{I=0}$ di-baryon
5. Conclusion

Pauli principles and Spin dependence

Baryon-Baryon Interaction

- # Recent Lattice QCD calculations have confirmed that the short-range baryon-baryon interactions follow the quark model symmetry and dynamics. => HALQCD
- # Two important effects are given by
 - Fermi-Dirac statistics among quarks (Pauli effect)
 - Spin dependent force: Color-magnetic interaction (CMI)
- # Symmetries of internal degrees of freedom
spin \times flavor \times color \times orbital motion
 $SU(2) \times SU(N_f) \times SU(3) \times O(3)$
 $SU(2N_f) \times SU(3) \times O(3)$

Pauli effect

- # $SU(6) \supset SU(2)_S \times SU(3)_f$ symmetry of two-baryon states:
 $56 [3] = (8, 1/2) + (10, 3/2)$ baryons.

$SU(6)$

$$[3] \times [3] = [6] + [42] + \text{odd L} \quad [51] + [33] \quad \text{even L}$$

Strong repulsion due to the **Pauli Exclusion Principle**

$$L=0 \quad [6] \times [51] \times [222] \neq [111111]$$

orbital flavor color **Forbidden**
spin singlet

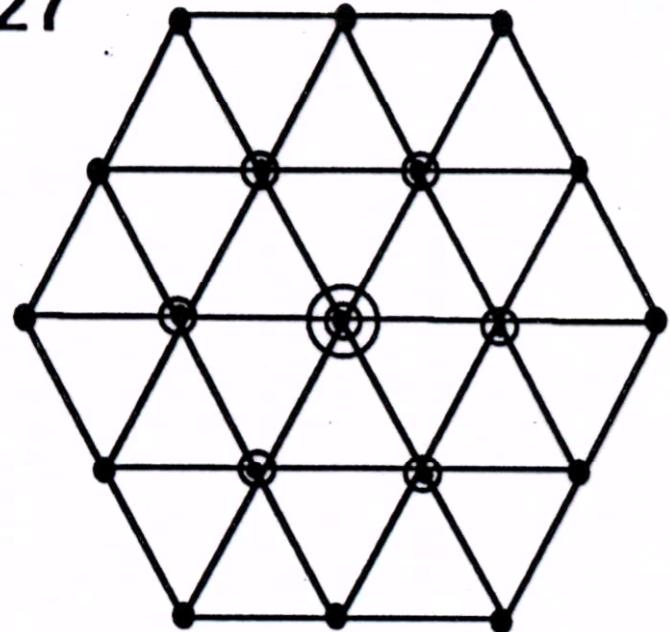
The totally symmetric orbital states are forbidden in the **[51]** flavor-spin states.

Strong short-range repulsion appears when the [6] symmetric orbital state is forbidden by the Pauli principle.

L	SU(4)	BB' (S,I)
even	{33}	$\Delta\Delta(3,0), \Delta\Delta(0,3)$
	{51} forbidden	$\Delta\Delta(3,2), \Delta\Delta(2,3), N\Delta(2,2), N\Delta(1,1)$
	{33} + {51}	$\Delta\Delta+N\Delta(2,1), \Delta\Delta+N\Delta(1,2)$ $NN+\Delta\Delta(1,0), NN+\Delta\Delta(0,1)$
odd	{6} forbidden	$\Delta\Delta(3,3)$
	{42}	$\Delta\Delta(3,1), \Delta\Delta(1,3), \Delta\Delta(2,0), \Delta\Delta(0,2)$ $N\Delta(2,1), N\Delta(1,2)$
	{6} + {42}	$N\Delta+\Delta\Delta(2,2), NN+\Delta\Delta(0,0)$
	{6} + {42} ²	$NN+N\Delta+\Delta\Delta(1,1)$

$B_8 B_8$ Flavor Symmetric \rightarrow singlet even/triplet odd

27



$NN(I=1)$

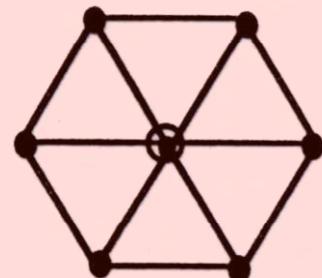
$\Sigma N(I=3/2), \Sigma N - \Lambda N(I=1/2)$

$\Sigma \Sigma(I=2), \Xi N - \Sigma \Sigma - \Sigma \Lambda(I=1), \Xi N - \Sigma \Sigma - \Lambda \Lambda(I=0)$

$\Xi \Sigma(I=3/2), \Xi \Sigma - \Xi \Lambda(I=1/2)$

$\Xi \Xi(I=1)$

8_s



$\Sigma N - \Lambda N(I=1/2)$

$\Xi N - \Sigma \Lambda(I=1), \Xi N - \Sigma \Sigma - \Lambda \Lambda(I=0)$

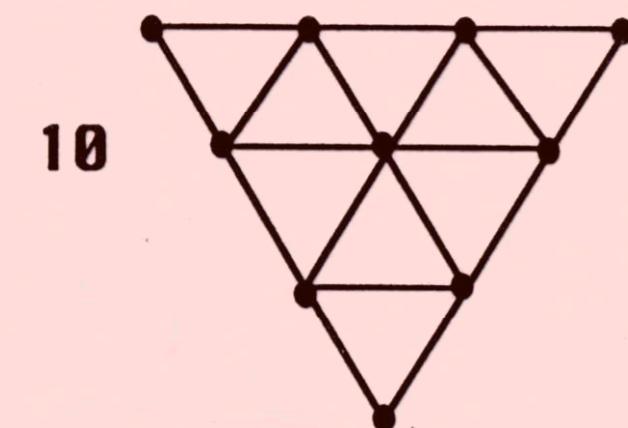
$\Xi \Sigma - \Xi \Lambda(I=1/2)$

1

•

$\Xi N - \Sigma \Sigma - \Lambda \Lambda(I=0)$

B_8B_8 Flavor Antisymmetric \rightarrow triplet even/singlet odd

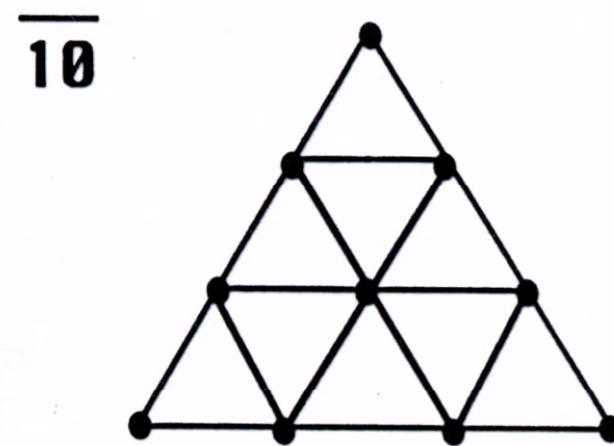


$\Sigma N(I=3/2)$

$\Xi N - \Sigma \Sigma - \Sigma \Lambda (I=1)$

$\Xi \Sigma - \Xi \Lambda (I=1/2)$

$\Xi \Xi (I=0)$

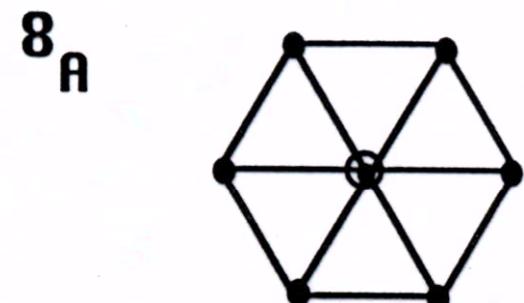


$NN(I=0)$

$\Sigma N - \Lambda N (I=1/2)$

$\Xi N - \Sigma \Lambda (I=1)$

$\Xi \Sigma (I=3/2)$



$\Sigma N - \Lambda N (I=1/2)$

$\Xi N - \Sigma \Sigma - \Sigma \Lambda (I=1), \Xi N (I=0)$

$\Xi \Sigma - \Xi \Lambda (I=1/2)$

Pauli effect

- # HAL QCD data are consistent with the quark Pauli effects.

S=0

1	[33]	Allowed, $\Lambda\Lambda + N\Xi + \Sigma\Sigma \rightarrow H$
8 _s	[51]	Pauli forbidden , ΣN ($I=1/2, S=0$)
27	[33], [51]	55% Allowed, $NN \, ^1S_0$

S=1

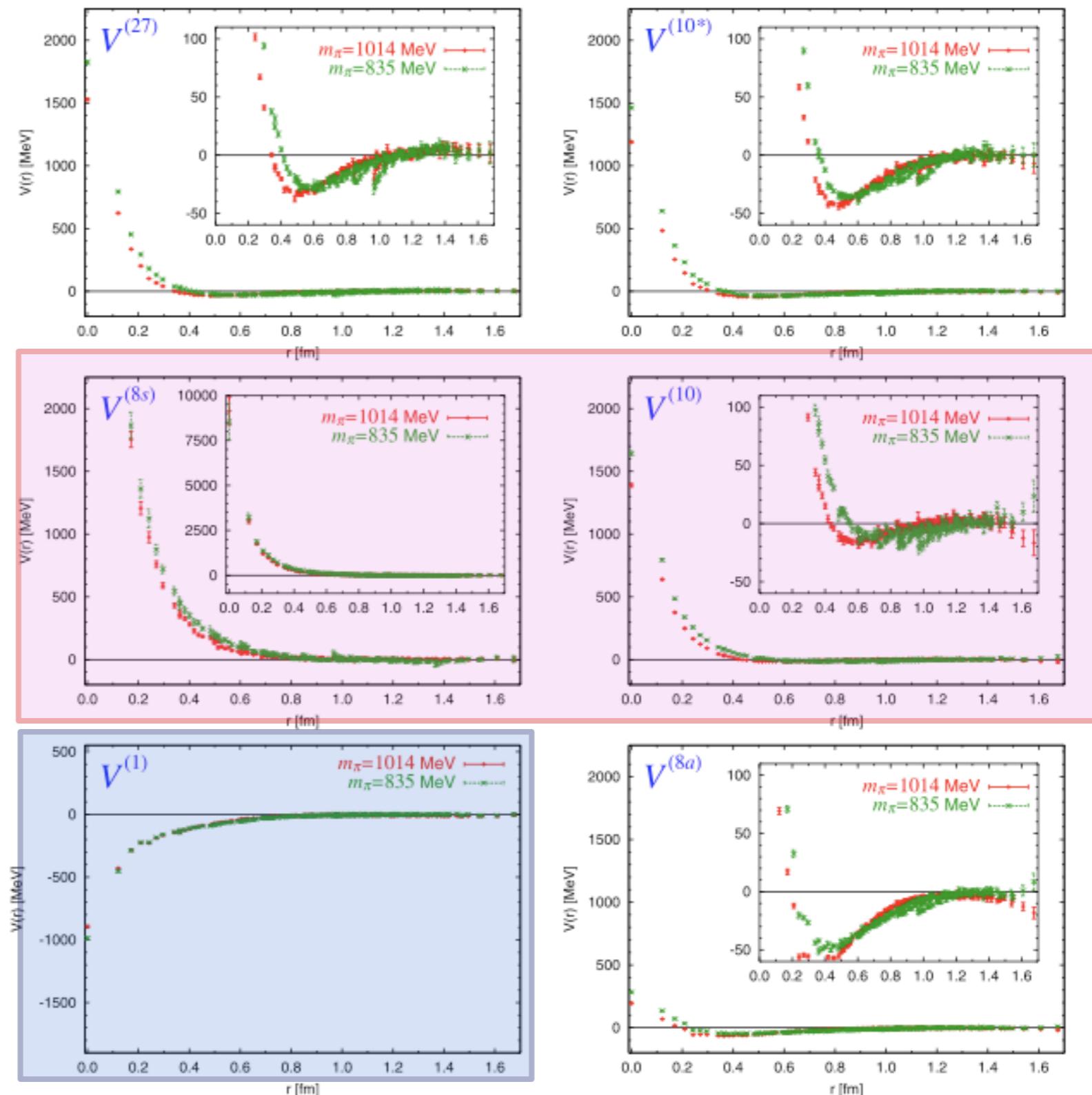
8 _a	[33], [51]	
10	[33], [51]	Almost forbidden , ΣN ($I=3/2, S=1$)
10*	[33], [51]	$NN \, ^3S_1$

Pauli effect

T. Inoue et al., (HAL QCD) PTP 124, 591 (2010)

HAL QCD data are consistent with S=0

1	[33]	All
8 _s	[51]	Pauli
27	[33], [51]	55%
S=1		
8 _a	[33], [51]	All
10	[33], [51]	All
10*	[33], [51]	NN



Spin dependence

■ Spin-spin interaction aka Color-Magnetic Interaction (CMI)

$$V_{\text{CMI}} = -\alpha \sum_{i < j} (\vec{\lambda}_i \cdot \vec{\lambda}_j) (\vec{\sigma}_i \cdot \vec{\sigma}_j) f(r_{ij}) \quad f(r_{ij}) \sim \delta(r_{ij})$$

prefers symmetric color-spin states

$$\langle V_{\text{CMI}} \rangle_{(0s)^N} = \alpha \langle f(r) \rangle_{0s} \Delta_{\text{CM}} = V_0 \Delta_{\text{CM}}$$

$$\Delta_{\text{CM}} \equiv \left\langle - \sum_{i < j} (\vec{\lambda}_i \cdot \vec{\lambda}_j) (\vec{\sigma}_i \cdot \vec{\sigma}_j) \right\rangle$$

$$\Delta_{\text{CM}} = 8N - 2C_2[SU(6)_{cs}] + \frac{4}{3}S(S+1) + C_2[SU(3)_c]$$

$$C_2[SU(g)]([f_1, f_2, \dots, f_g]) = \sum_i f_i (f_i - 2i + g + 1) - \frac{N^2}{g}$$

$$C_2[\text{singlet}] = 0$$

Spin dependence

- CMI prefers color-spin symmetric states, i.e. flavor antisymmetric states.

$$\Delta_{\text{CM}} = 8N - 2C_2[SU(6)_{cs}] + \frac{4}{3}S(S+1) + C_2[SU(3)_c]$$

$$\Delta_{\text{CM}}(\mathbf{10}) - \Delta_{\text{CM}}(\mathbf{8}) = 8 - (-8) = 16$$

$$M(\Delta) - M(N) = 16V_0 \sim 300 \text{ MeV}$$

$$V_0 \sim 300/16 \sim 19 \text{ MeV}$$

$$\Delta_{\text{CM}}(H) - 2\Delta_{\text{CM}}(\Lambda) = -24 - 2(-8) = -8 \quad \mathbf{H}(\Lambda\Lambda + \mathbf{N}\Xi + \Sigma\Sigma, \mathbf{S=0})$$

$$\Delta_{\text{CM}}(D_\Delta) - 2\Delta_{\text{CM}}(\Delta) = 16 - 2 \times 8 = 0 \quad \mathbf{D}_\Delta(\Delta\Delta, \mathbf{I=0, S=3})$$

H di-baryon

H di-baryon

$H = u^2 d^2 s^2$ ($S = -2$, $J = 0^+$ $I = 0$) predicted by Jaffe (1977)

CMI prefers

symmetric color-spin state \Leftrightarrow antisymmetric flavor state

Most favored state is the flavor singlet state.

$\Sigma\Sigma$ 150

$$|F = 1\rangle = -\sqrt{\frac{1}{8}}|\Lambda\Lambda\rangle + \sqrt{\frac{4}{8}}|N\Xi\rangle + \sqrt{\frac{3}{8}}|\Sigma\Sigma\rangle$$

$N\Xi$ 28

$\Lambda\Lambda$ 0

H (narrow resonance?)

H (bound)

H di-baryon

Quark cluster model approach to the coupled channel $\Lambda\Lambda$, $N\Xi$, $\Sigma\Sigma$ system, with the linear + OGE potential for quarks.

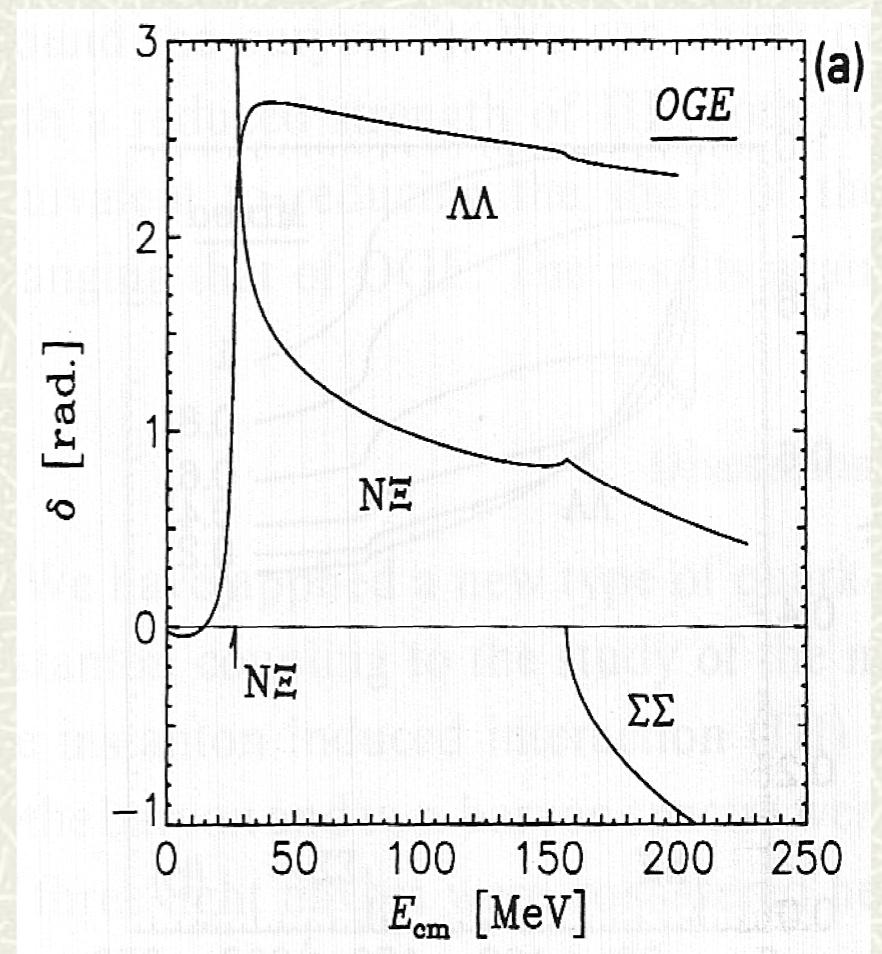
MO, K. Shimizu, K. Yazaki (1983)

- The BB(F=1) channel is **PAULI allowed**.

- There appears a very sharp resonance just below the $N\Xi$ threshold.
- Additional long range attraction will form a bound state below the $\Lambda\Lambda$ threshold.

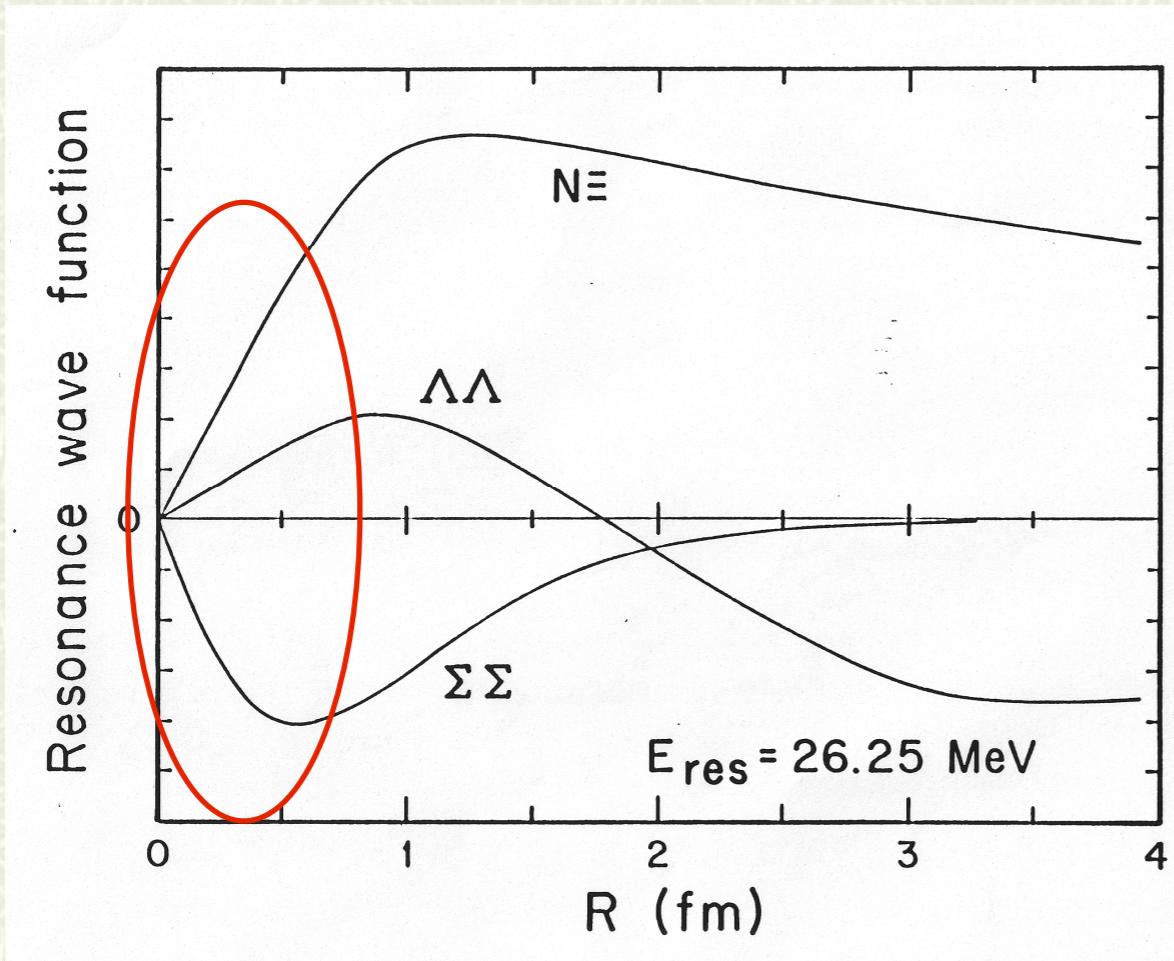
S. Takeuchi and MO (1991)

- The instanton induced interaction yields 3-body repulsive force to H, resulting no bound state.



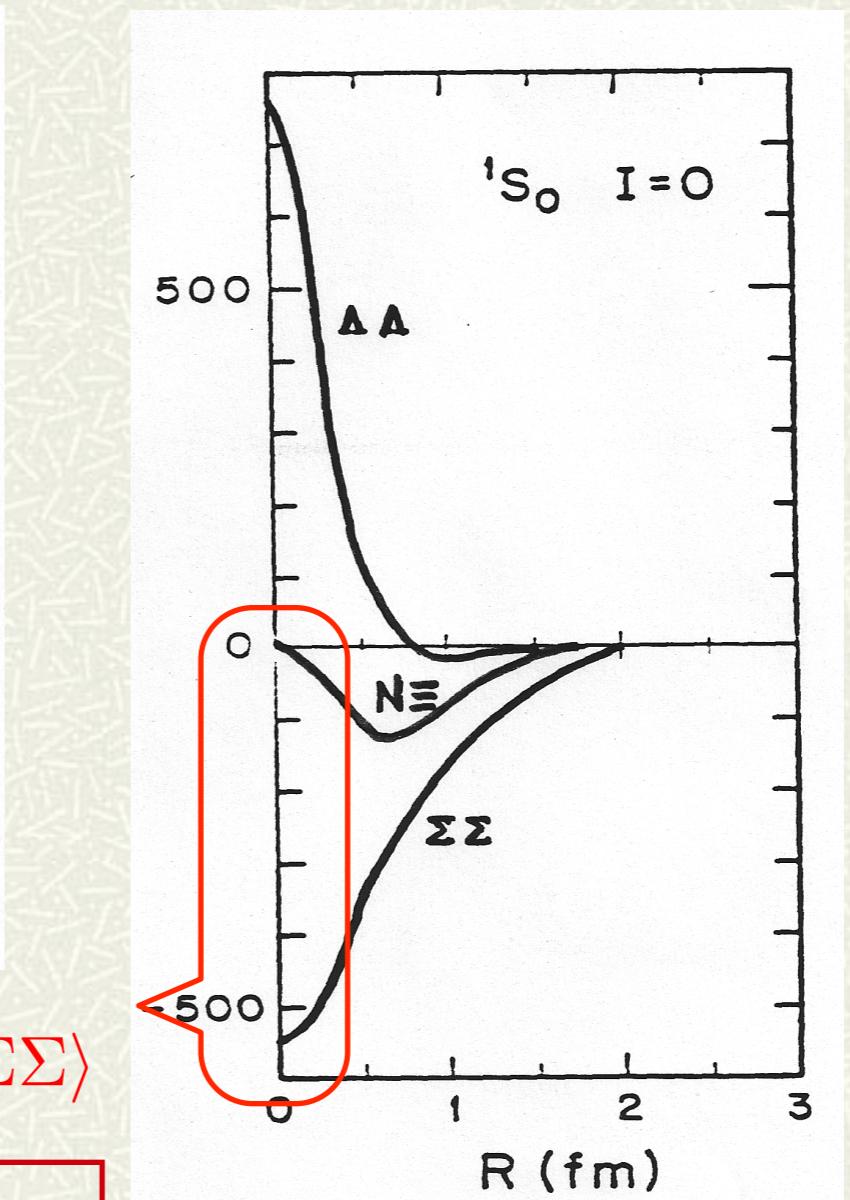
H di-baryon

- # The resonance H looks as a "bound state" of $N\Xi$, but the wave function (@ the resonance peak) reveals its flavor singlet-ness.



$$|\text{Singlet}\rangle = \sqrt{\frac{1}{8}}|\Lambda\Lambda\rangle + \sqrt{\frac{4}{8}}|N\Xi\rangle - \sqrt{\frac{3}{8}}|\Sigma\Sigma\rangle$$

No strong repulsion at short distances

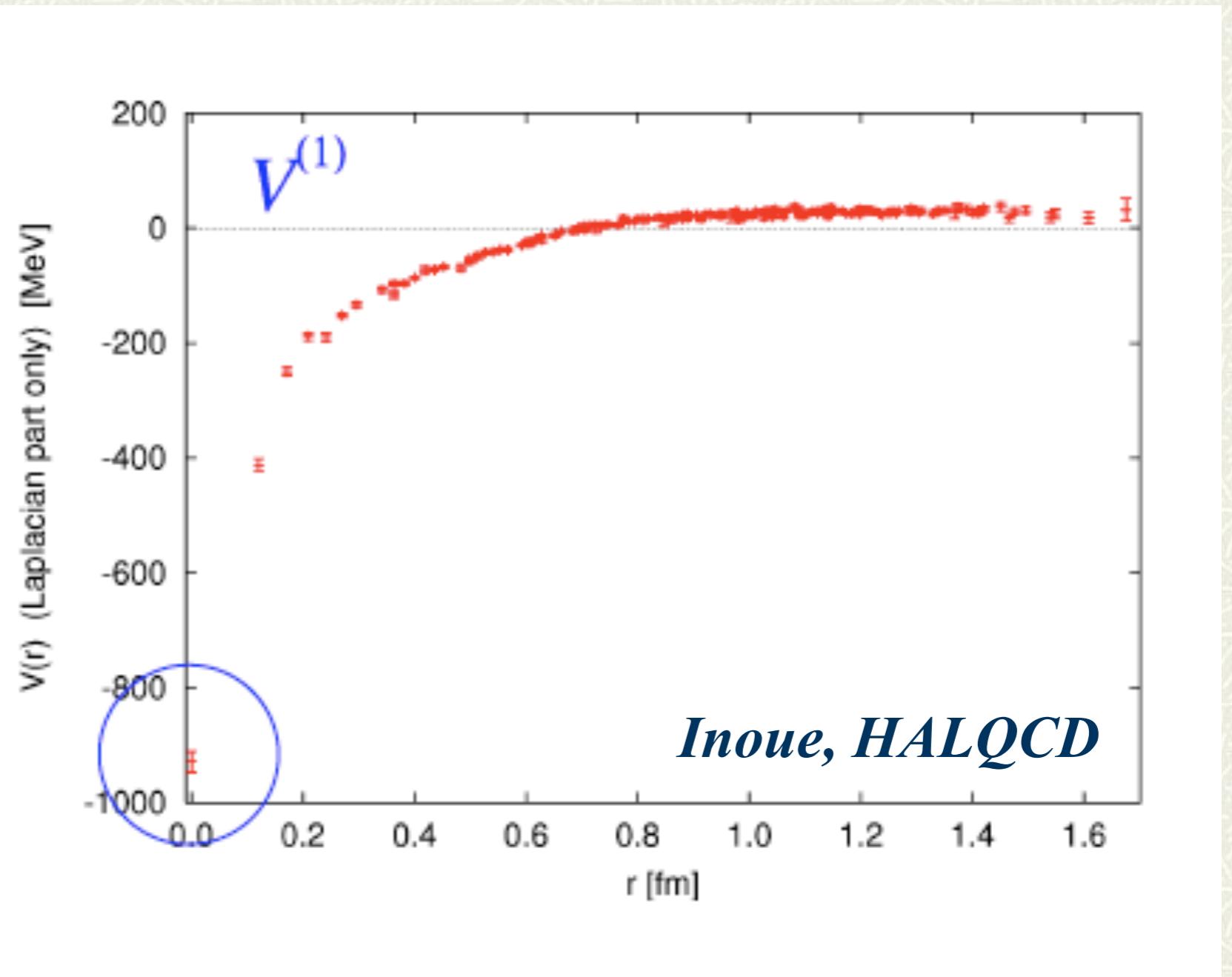


H di-baryon on Lattice

- # A compact 6-quark bound/resonance state is expected.
- # New Lattice QCD calculations of H di-baryon
 - Bound H di-baryon in Flavor SU(3) Limit of Lattice QCD
Takashi Inoue (HAL QCD Collaboration)
PRL 106, 162002 (2011)
 - Evidence for a Bound H di-baryon from Lattice QCD
S. R. Beane et al. (NPLQCD Collaboration)
PRL 106, 162001 (2011)

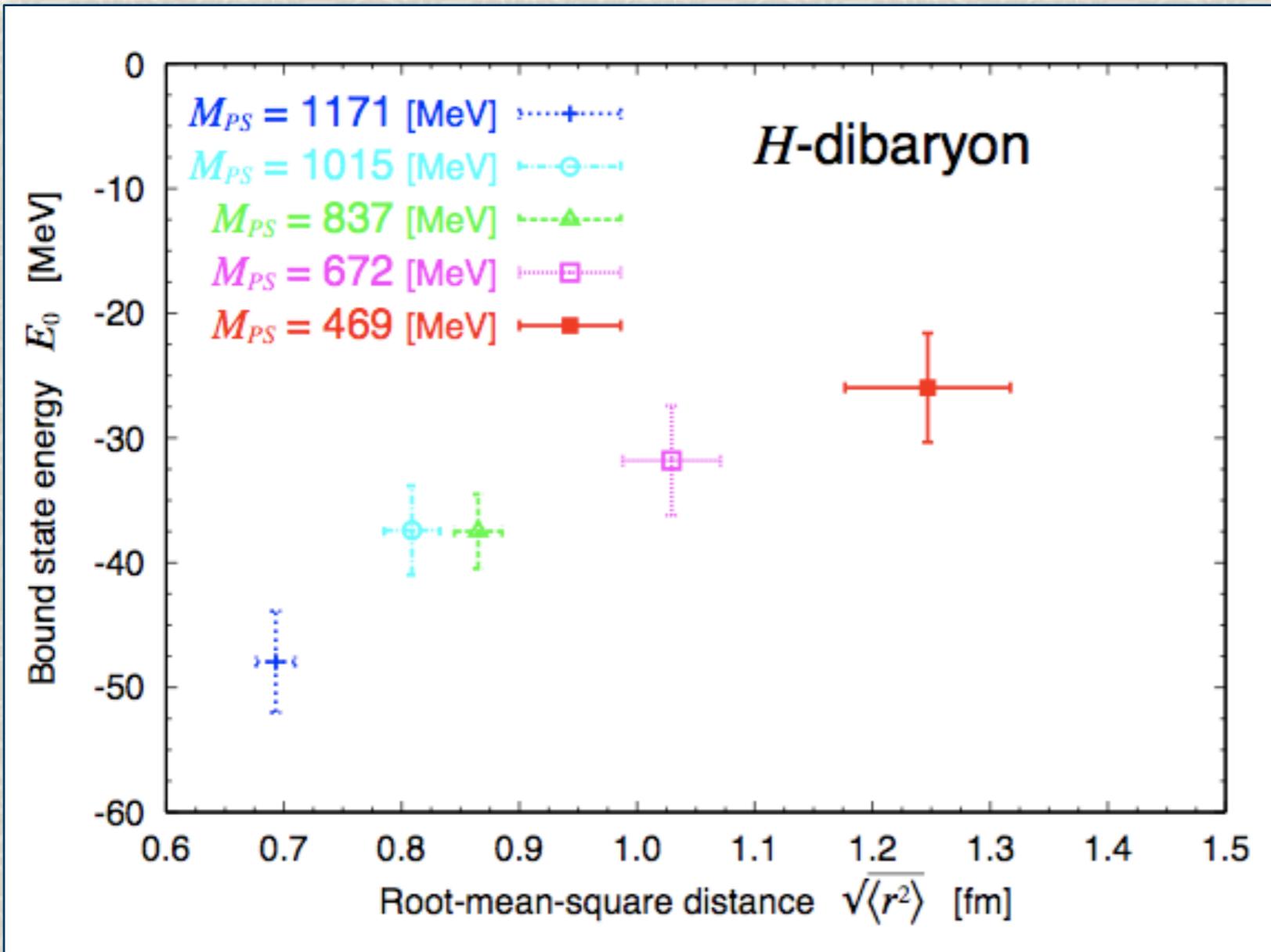
H di-baryon on Lattice

- # A compact 6-quark bound/resonance state is expected.
- # New Lattice QC
- Bound H di-bar
Takashi Inoue (1)
PRL 106, 162001
- Evidence for a E
S. R. Beane et al
PRL 106, 162001



H di-baryon on Lattice

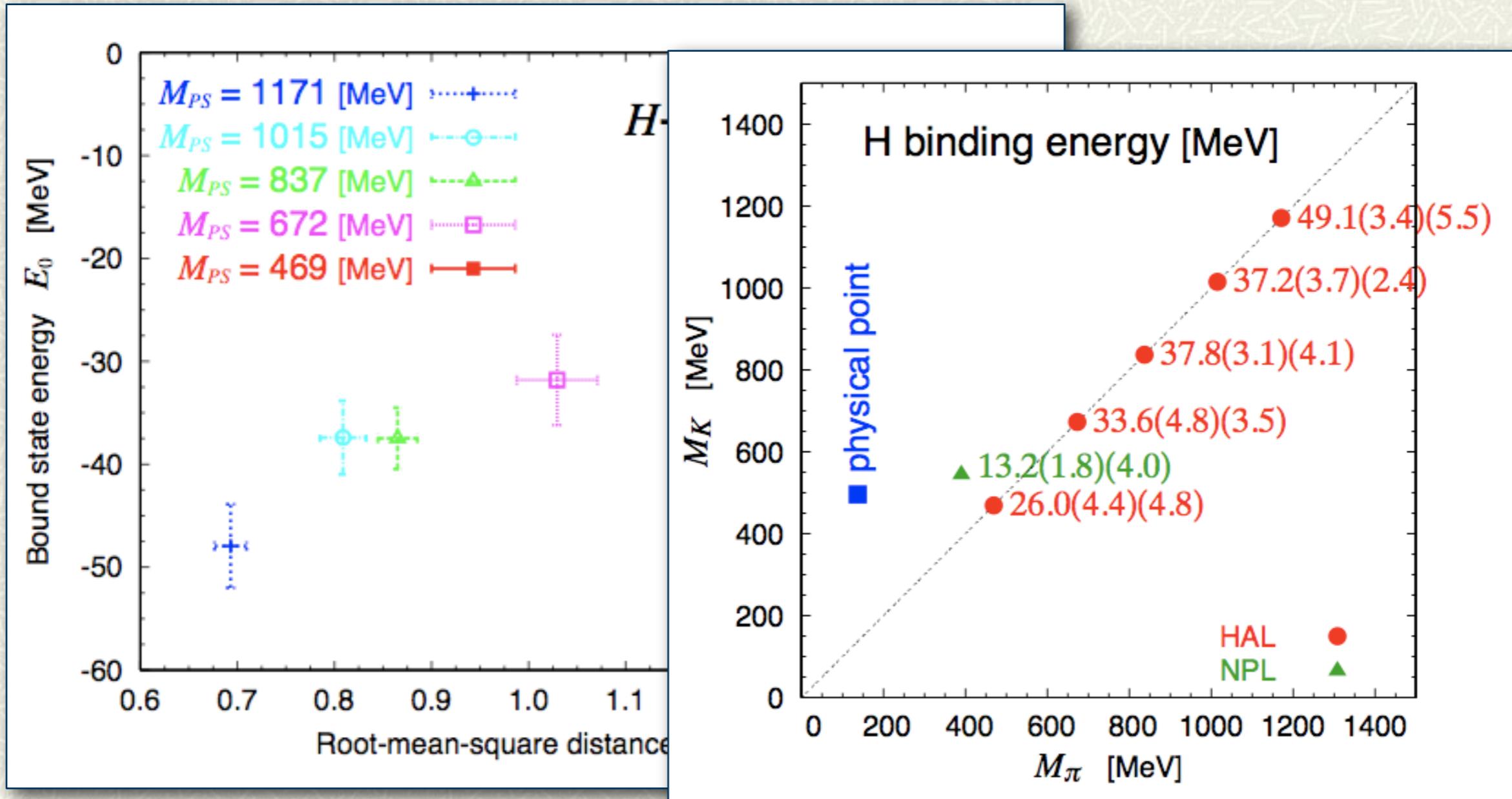
Lattice QCD predicts H di-baryon



T. Inoue et al., (HAL-QCD) NP A881 (2012) 28.

H di-baryon on Lattice

Lattice QCD predicts H di-baryon



T. Inoue et al., (HAL-QCD) NP A881 (2012) 28.

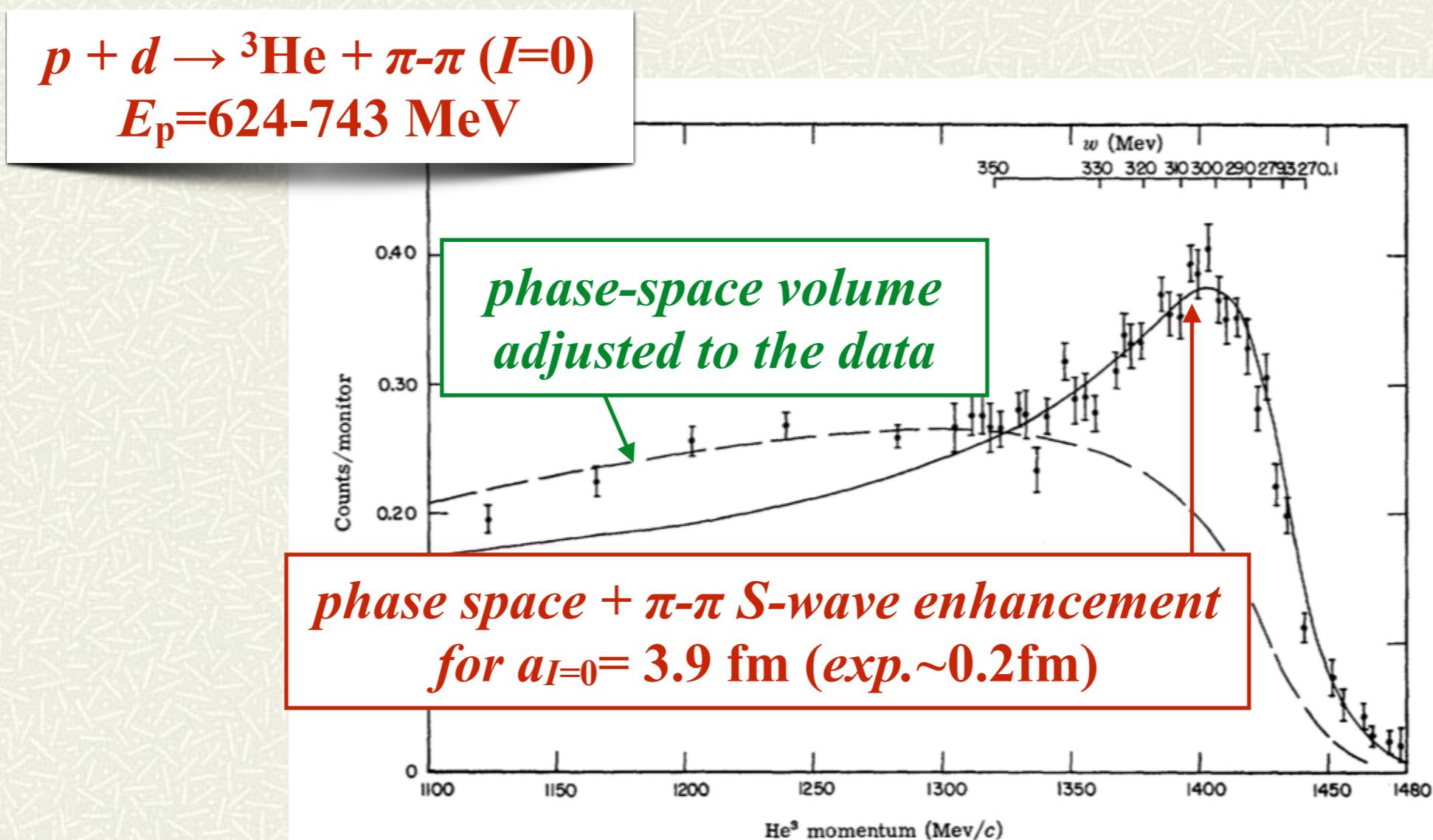
From ABC to d^*

ABC effect

- # **A. Abashian, N.E. Booth, K.M. Crowe**
Possible anomaly in meson production in p+d collisions, PRL 5, 258 (1960)
Anomaly in meson production in p+d collisions, PRL 7, 35 (1961)
- # Low mass $\pi\pi$ enhancement observed in the inclusive production,
 $p + d \rightarrow {}^3\text{He} + X, {}^3\text{H} + X$ ($E_p = 624\text{-}743$ MeV, Berkeley)
 $X = \pi$ or
 $\pi\pi$ ($I=0$) for ${}^3\text{He}$
 $\pi\pi$ ($I=1$) for ${}^3\text{He}$ and ${}^3\text{H}$
Using the data of ${}^3\text{H}$ production, one can determine the $\pi\pi$ ($I=0$) production cross section.

ABC effect

- # A. Abashian, N.E. Booth, K.M. Crowe
Possible anomaly in meson production in p+d collisions, PRL 5, 258 (1960)
Anomaly in meson production in p+d collisions, PRL 7, 35 (1961)



ABC effect

- # **A. Abashian, N.E. Booth, K.M. Crowe**
Possible anomaly in meson production in p+d collisions, PRL 5, 258 (1960)
Anomaly in meson production in p+d collisions, PRL 7, 35 (1961)
- # Low mass $\pi\pi$ enhancement observed in the inclusive production,
 $p + d \rightarrow {}^3\text{He} + X, {}^3\text{H} + X$ ($E_p = 624\text{-}743$ MeV, Berkeley)
 $X = \pi$ or
 $\pi\pi$ ($I=0$) for ${}^3\text{He}$
 $\pi\pi$ ($I=1$) for ${}^3\text{He}$ and ${}^3\text{H}$
Using the data of ${}^3\text{H}$ production, one can determine the $\pi\pi$ ($I=0$) production cross section.
- # As the beam energies correspond to $\Delta\Delta$ excitation in nucleus, the $\pi\pi$ enhancement is attributed to the $\Delta\Delta$ excitations.
→ precise measurements by WASA group (Bashkanov).
WASA@CELSIUS, PRL 102, 052301 (2009)
WASA@COSY, PRL 106, 242302 (2011)

ABC effect \rightarrow d* resonance

Double-pionic fusion of nuclear systems and the “ABC” effect

WASA@CELSIUS, PRL 102, 052301 (2009)

$p+d \rightarrow d+\pi^0+\pi^0+p_{\text{spectator}}$ at $T_p=1.03, 1.35$ GeV

The $\pi^0\pi^0$ enhancement is much larger than estimate in $\Delta\Delta$ production
by Alvarez-Ruso, Oset, Hernandez, NPA 633 (1998) 519.

A s-channel resonance at $m_R \sim 2.36$ GeV may explain the results.

ABC effect in basic double-pionic fusion: A new resonance?

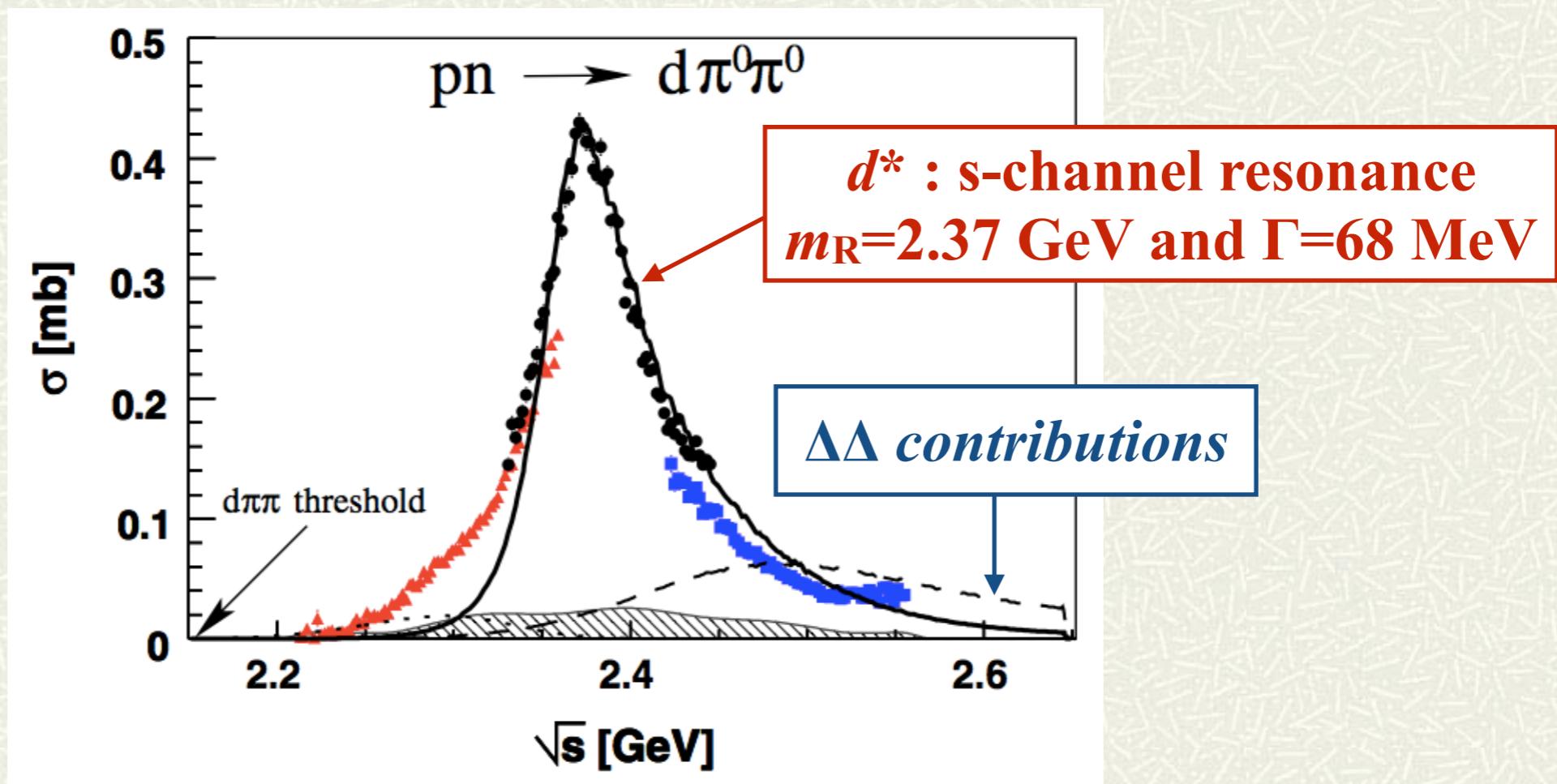
WASA@COSY, PRL 106, 242302 (2011)

$p+d \rightarrow d+\pi^0+\pi^0+p_{\text{spectator}}$ at $T_p=1.0, 1.2, 1.4$ GeV

ABC effect $\rightarrow d^*$ resonance

WASA@COSY, PRL 106, 242302 (2011)

$p + n(d) \rightarrow d + \pi^0 + \pi^0$ (+p_{spectator}) at $T_p=1.0, 1.2, 1.4$ GeV

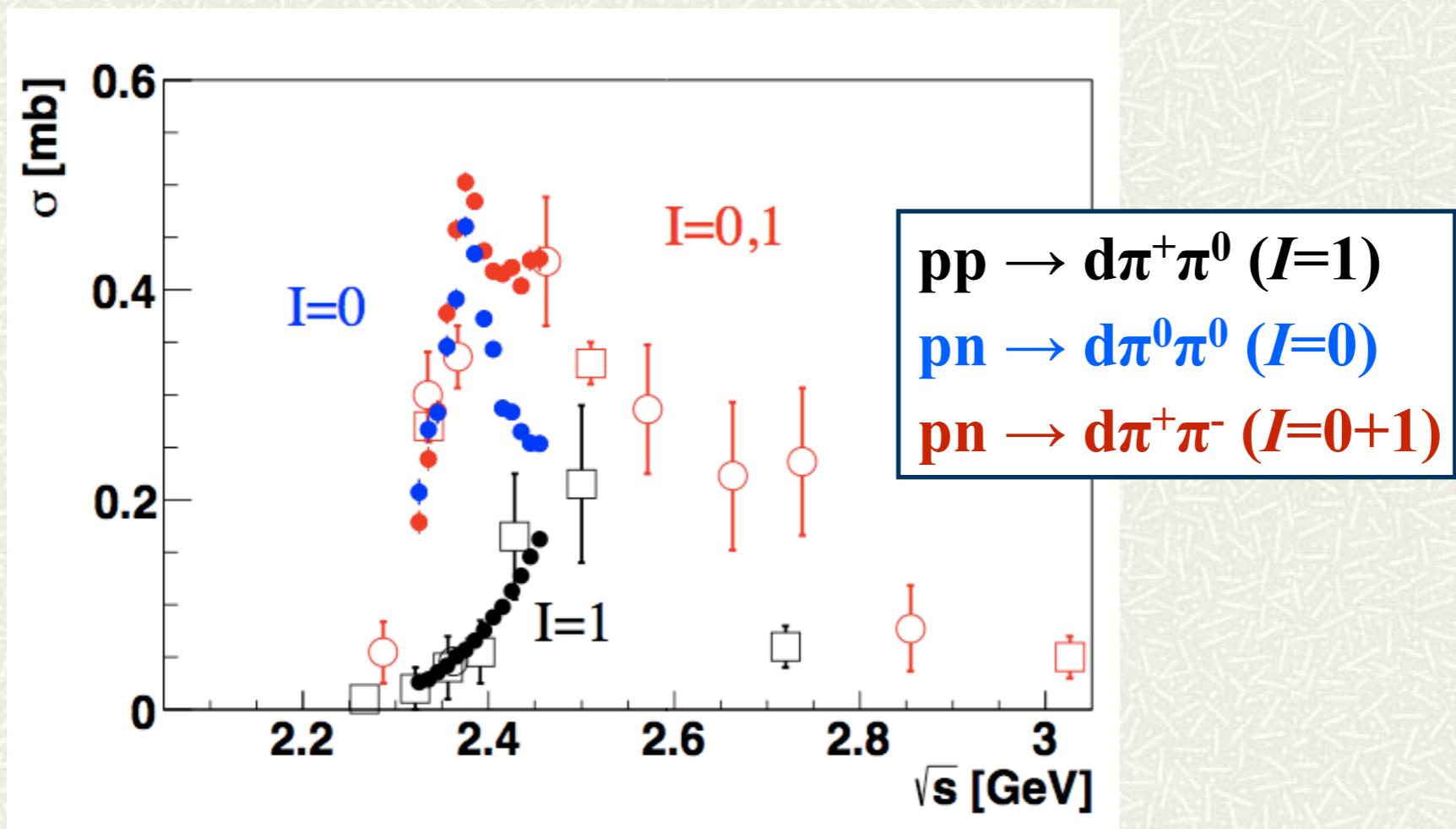


A di-baryon resonance, d^* ($I=0, J^\pi=3^+$) (in pn and $\Delta\Delta$) is confirmed.

ABC effect \rightarrow d^* resonance

WASA@COSY, PLB 721 (2013) 229

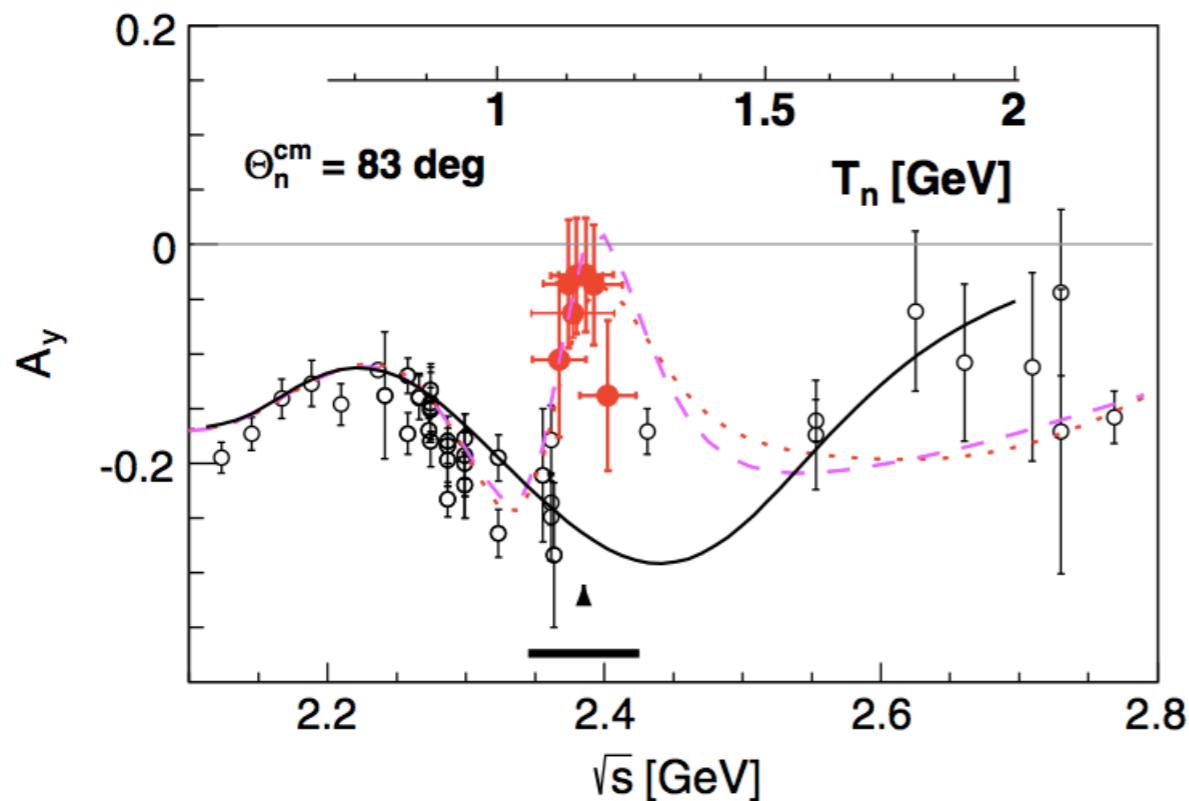
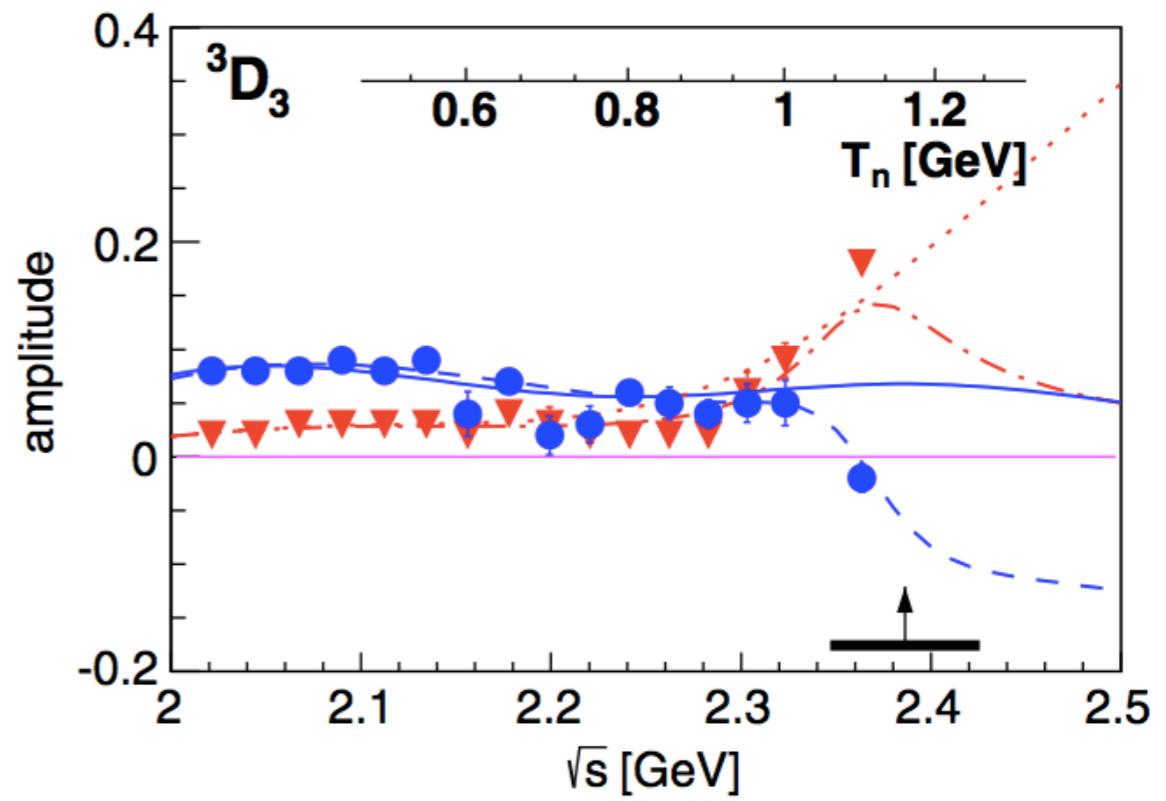
Isospin decomposition of the basic double-pionic fusion in the region of the ABC effect



The ($I=1$) production is consistent with the $\Delta\Delta$ production.

ABC effect \rightarrow d^* resonance

- # WASA@COSY+SAID, PRL 112, 202301 (2014)
Evidence for a new resonance from polarized n-p scattering
 $d(\uparrow) + p \rightarrow np + p_{\text{spectator}}$
np analyzing power, $A_y(\theta)$, at $T_n=1.108-1.197$ GeV
A phase shift analysis of 3D_3 (3^+) amplitudes shows a narrow resonance
at $M=2380$ MeV and $\Gamma \sim 70$ MeV.

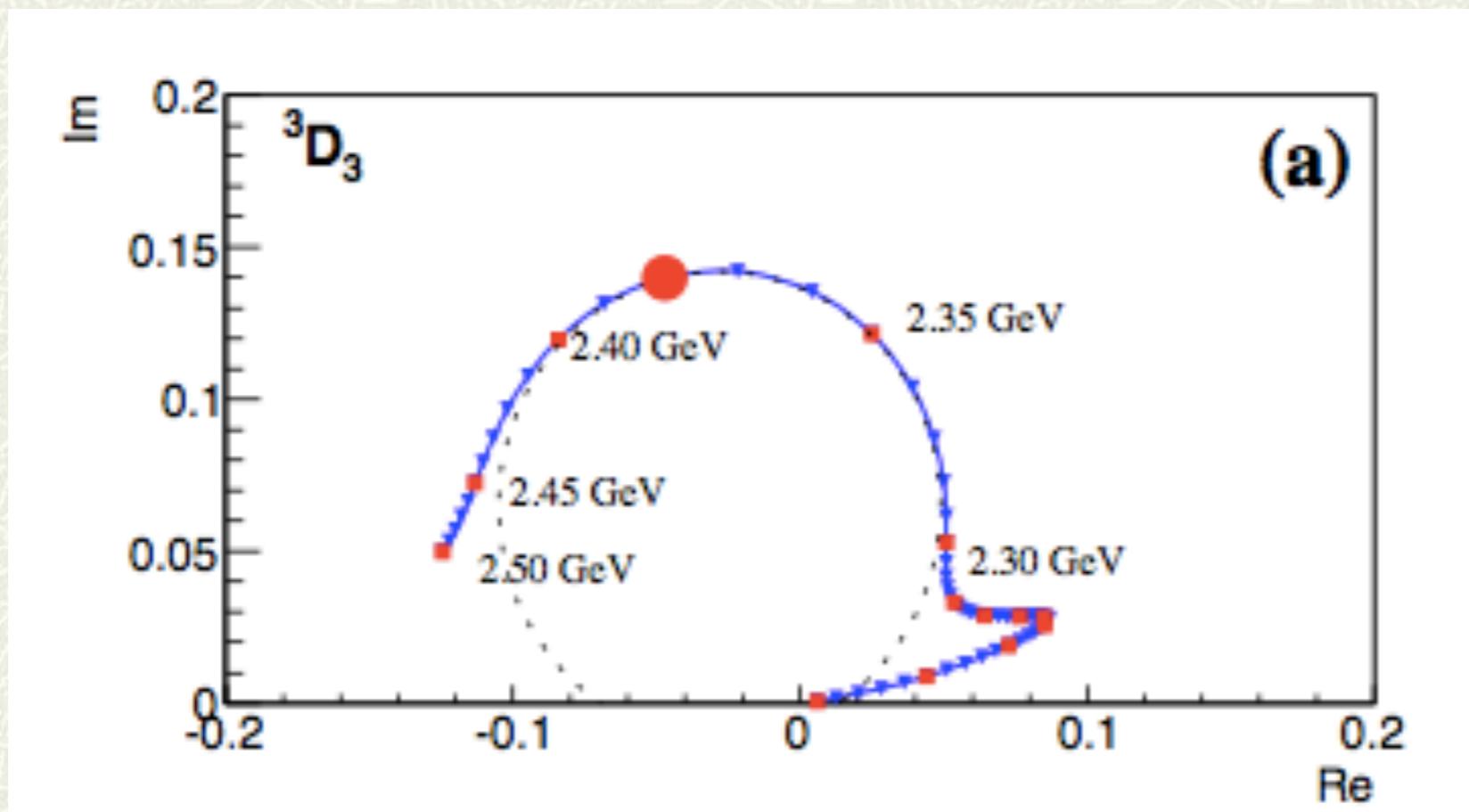


ABC effect → d* resonance

- # WASA@COSY+SAID, PRL 112, 202301 (2014)
Evidence for a new resonance from polarized n-p scattering

np analyzing power, $A_y(\theta)$, at $T_n=1.108-1.197$ GeV

A phase shift analysis of 3D_3 (3^+) amplitudes shows a narrow resonance at $M=2380$ MeV and $\Gamma \sim 70$ MeV.



D_Δ (ΔΔ)_{I=0} di-baryon

$D_\Delta (\Delta\Delta)_{I=0}$ di-baryon

$S=3, I=0$ (Δ^2) bound state
→ relatively narrow $NN\pi\pi$ ($I=0$) resonance

Volume 90B, number 1, 2

PHYSICS LETTERS

11 February 1980

NUCLEAR FORCE IN A QUARK MODEL

M. OKA and K. YAZAKI

*Department of Physics, Faculty of Science, University of Tokyo,
Bunkyo-ku, Tokyo 113, Japan*

The problem of the nuclear force in a nonrelativistic quark model is studied by the resonating group method which has been extensively used in treating the interaction between composite particles. The calculated phase shifts for the 3S_1 and 1S_0 states of two nucleons indicate the presence of a strong repulsive force at short distance, while an attractive force is predicted for the 7S_3 ($(S, T) = (3, 0)$) state of two Δ 's. These features are due to an interplay between the Pauli principle and the spin-spin interaction between quarks.

Classification of two baryon systems without strangeness.

The spin-flavor $SU(6)$ is reduced to the spin-isospin $SU(4)$.

$S(I)$ denotes the total spin (isospin) of the system.

L	$SU(4)$	$BB' (S, I)$
even	{33}	$\Delta\Delta (3,0), \Delta\Delta (0,3)$
	{51} forbidden	$\Delta\Delta (3,2), \Delta\Delta (2,3), N\Delta (2,2), N\Delta (1,1)$
	{33} + {51}	$\Delta\Delta+N\Delta (2,1), \Delta\Delta+N\Delta (1,2)$ $NN+\Delta\Delta (1,0), NN+\Delta\Delta (0,1)$
odd	{6} forbidden	$\Delta\Delta (3,3)$
	{42}	$\Delta\Delta (3,1), \Delta\Delta (1,3), \Delta\Delta (2,0), \Delta\Delta (0,2)$ $N\Delta (2,1), N\Delta (1,2)$
	{6} + {42}	$N\Delta+\Delta\Delta (2,2), NN+\Delta\Delta (0,0)$
	{6} + {42}^2	$NN+N\Delta+\Delta\Delta (1,1)$

$$\Gamma_{\text{CM}} \equiv - \sum_{i < j} (\lambda_i^a \lambda_j^a) (\sigma_i^k \sigma_j^k) = 8n - 2C_6 + \frac{4}{3}S(S+1)$$

$$C_6 \equiv C_2[SU(6)_{\text{cs}}] = \sum_i f_i(f_i - 2i + 7) - \frac{n^2}{6}$$

$\text{SU}(6)_{\text{cs}}$ representation	$4C_6$	$\text{SU}(3)_{\text{f}}$ representation	$\Gamma_{\text{CM}}(\Delta) = +8$ $\Gamma_{\text{CM}}(N) = -8$
490	144	$\underline{\frac{1}{8}}$	$H = \Lambda\Lambda(I = S = 0)$ $V = V_0 \times (-8)$
896	120	$\underline{\frac{10}{27}}$	
280	96	$\underline{\frac{10}{35}}$	
175	96	$\underline{10^*}$	$\Delta\Delta(I = 0, S = 3)$ $V = V_0 \times 0$
189	80	$\underline{\frac{27}{35}}$	
35	48	$\underline{\frac{35}{28}}$	
1	0	$\underline{\frac{28}{28}}$	$\Delta\Delta(I = 3, S = 0)$ $V = V_0 \times 32$

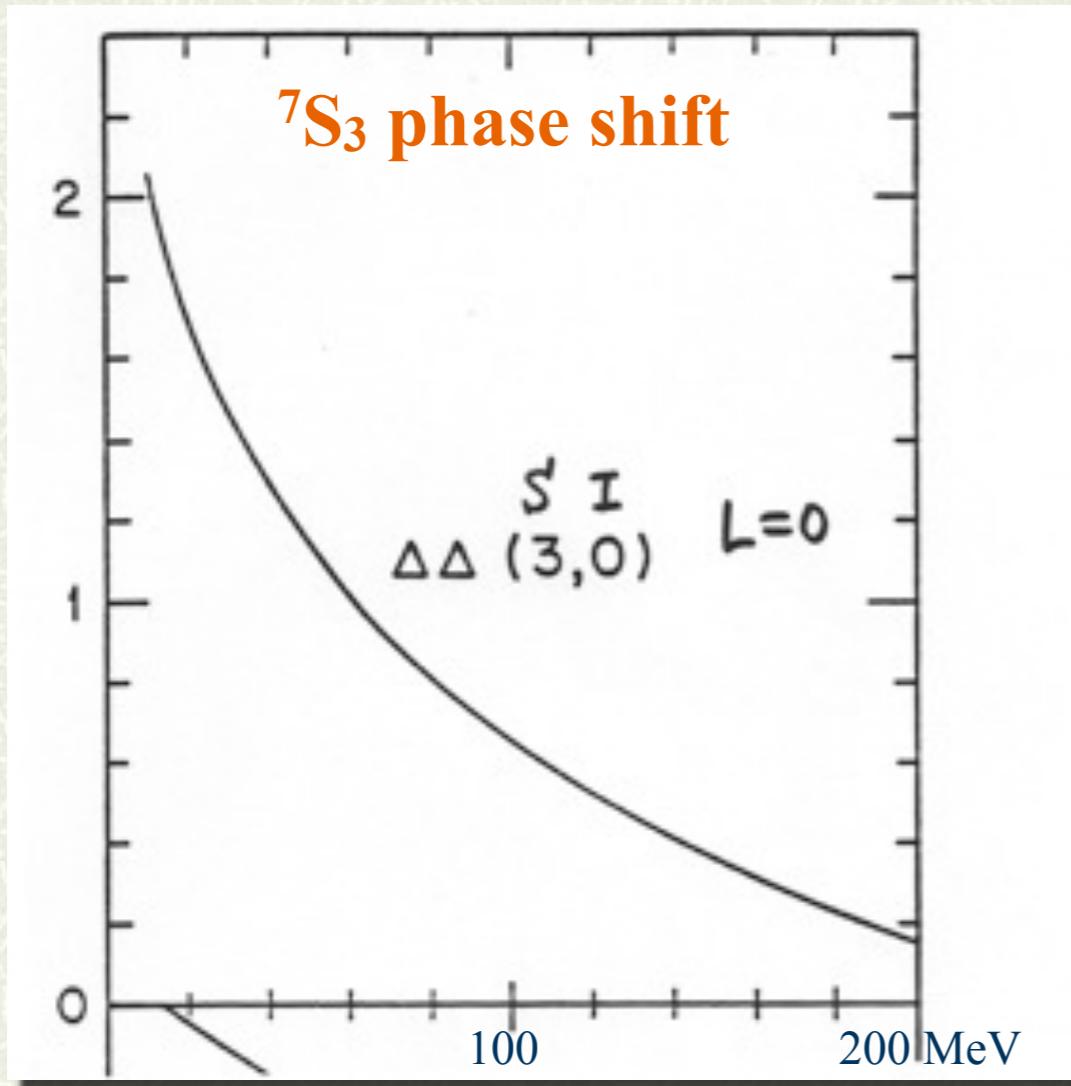
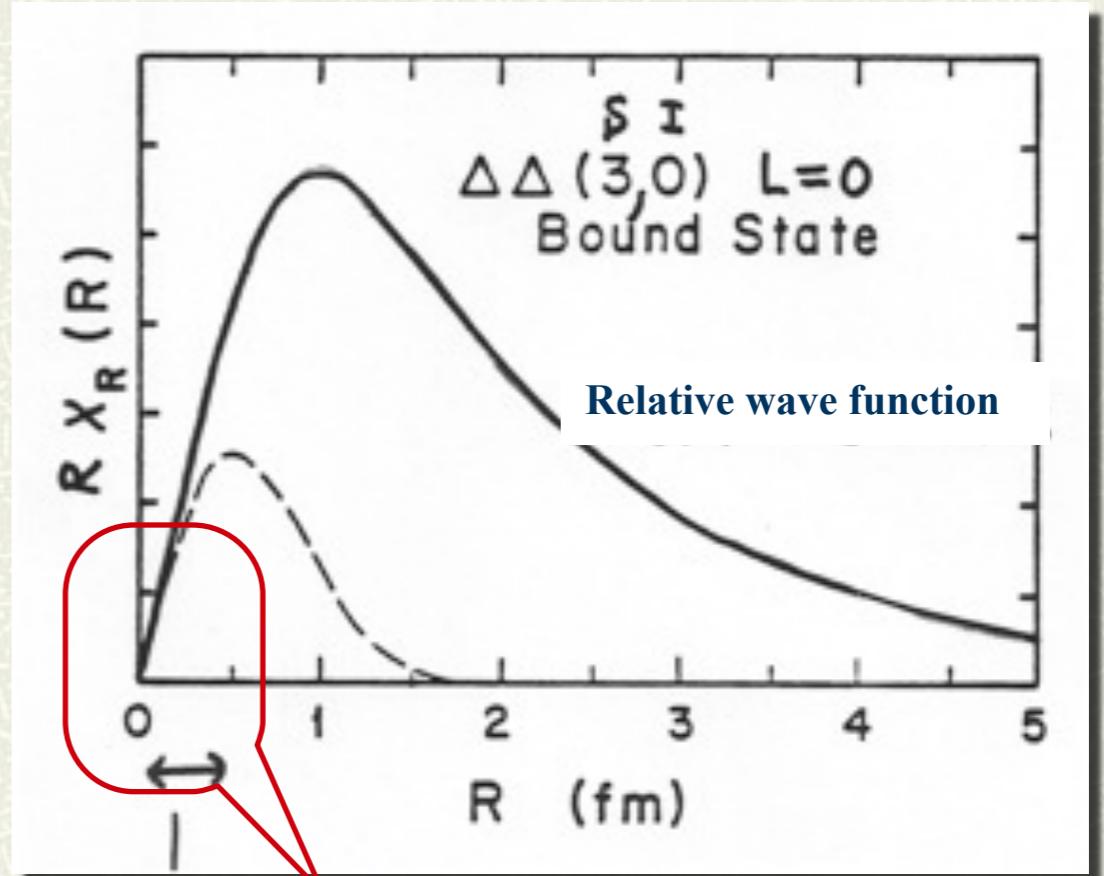
Perhaps a Stable Dihyperon*

R.L. Jaffe, PRL 38 (1977) 195

$V_0 = 300/16 \sim 18(\text{MeV})$

$D_\Delta (\Delta\Delta)_{I=0}$ di-baryon

$S=3, I=0$ (Δ^2) bound state



No repulsive core

Conclusion

- # Simple quark model description of the di-baryon interaction seems to work very well.
- # Di-baryon is supposed to be a compact six-quark like state, or at least it contains six-quark component predominantly.
- # LQCD has confirmed the Pauli effect as well as the CMI that favors flavor anti-symmetric states.
- # H ($F=1$) is the most-likely di-baryon.
- # $D_\Delta = (\Delta\Delta)$ ($I=0, S=3$) is another favorable state.
- # The d^* resonance at WASA-COSY is a strong candidate of a “compact” di-baryon.