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Pauli principles and  
  Spin dependence



Baryon-Baryon Interaction

Recent Lattice QCD calculations have confirmed that the 
short-range baryon-baryon interactions follow the quark 
model symmetry and dynamics. => HALQCD 

Two important effects are given by  
- Fermi-Dirac statistics among quarks (Pauli effect)  
- Spin dependent force: Color-magnetic interaction (CMI) 

Symmetries of internal degrees of freedom  
spin    × flavor  × color  × orbital motion  
SU(2) × SU(Nf) × SU(3) × O(3)  
 SU(2Nf)     × SU(3) × O(3)
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Pauli effect

SU(6) ⊃ SU(2)S × SU(3)f symmetry of two-baryon states:  
56 [3] = (8, 1/2) + (10, 3/2) baryons.
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56 56



forbidden

forbidden

taken from D. Sc Thesis by M.O. (1980)

Strong short-range repulsion appears when the [6] symmetric orbital 
state is forbidden by the Pauli principle.



B8B8 Flavor Symmetric → singlet even/triplet odd



B8B8 Flavor Antisymmetric → triplet even/singlet odd



HAL QCD data are consistent with the quark Pauli effects. 
S=0 
   1      [33]             Allowed, ΛΛ+NΞ+ΣΣ → H 
   8s               [51]    Pauli forbidden, ΣN (I=1/2, S=0) 
  27     [33], [51]    55% Allowed, NN 1S0 
S=1 
   8a      [33], [51]  
  10     [33], [51]    Almost forbidden, ΣN (I=3/2, S=1) 
  10*     [33], [51]    NN 3S1 
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Pauli effect
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Pauli effect T. Inoue et al., (HAL QCD) PTP 124, 591 (2010)



Spin dependence

Spin-spin interaction aka Color-Magnetic Interaction (CMI)
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Spin dependence

CMI prefers color-spin symmetric states, i.e. flavor 
antisymmetric states.
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�CM(10)��CM(8) = 8� (�8) = 16

�CM(H)� 2�CM(⇥) = �24� 2(�8) = �8

�CM(D�)� 2�CM(�) = 16� 2⇥ 8 = 0

�CM = 8N � 2C2[SU(6)cs] +
4
3
S(S + 1) + C2[SU(3)c]

M(�)�M(N) = 16V0 � 300 MeV

V0 � 300/16 � 19 MeV

DΔ (ΔΔ, I=0, S=3)

H (ΛΛ+NΞ+ΣΣ, S=0)



H di-baryon



H di-baryon

H = u2d2s2  (S= -2, J=0+ I=0) predicted by Jaffe (1977) 

CMI prefers  
   symmetric color-spin state  ⇔ antisymmetric flavor state  
 Most favored state is the flavor singlet state. 
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Quark cluster model approach to the coupled channel ΛΛ, NΞ, 
ΣΣ system, with the linear + OgE potential for quarks. 
 
MO, K. Shimizu, K. Yazaki (1983) 
- The BB(F=1) channel is PAULI allowed. 
!
- There appears a very sharp resonance  
     just below the NΞ threshold.  
- Additional long range attraction will form  
    a bound state below the ΛΛ threshold. 
!
S. Takeuchi and MO (1991) 
- The instanton induced interaction yields  
    3-body repulsive force to H, resulting no  
    bound state.

H di-baryon



The resonance H looks as a "bound state" of NΞ, but the wave 
function (@ the resonance peak) reveals its flavor singlet-ness.
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No strong repulsion at short distances

H di-baryon
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A compact 6-quark bound/resonance state is expected. 
New Lattice QCD calculations of H di-baryon 
Bound H di-baryon in Flavor SU(3) Limit of Lattice QCD  
Takashi Inoue (HAL QCD Collaboration) 
PRL 106, 162002 (2011) 
Evidence for a Bound H di-baryon from Lattice QCD  
S. R. Beane et al. (NPLQCD Collaboration)  
PRL 106, 162001 (2011)

H di-baryon on Lattice

!17



A compact 6-quark bound/resonance state is expected. 
New Lattice QCD calculations of H di-baryon 
Bound H di-baryon in Flavor SU(3) Limit of Lattice QCD  
Takashi Inoue (HAL QCD Collaboration) 
PRL 106, 162002 (2011) 
Evidence for a Bound H di-baryon from Lattice QCD  
S. R. Beane et al. (NPLQCD Collaboration)  
PRL 106, 162001 (2011)

H di-baryon on Lattice

!17

Inoue, HALQCD



H di-baryon on Lattice
Lattice QCD predicts H di-baryon
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T. Inoue et al., (HAL-QCD) NP A881 (2012) 28.



H di-baryon on Lattice
Lattice QCD predicts H di-baryon
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T. Inoue et al., (HAL-QCD) NP A881 (2012) 28.



From ABC to d*



ABC effect
A. Abashian, N.E. Booth, K.M. Crowe  
Possible anomaly in meson production in p+d collisions, PRL 5, 258 (1960)  
Anomaly in meson production in p+d collisions, PRL 7, 35 (1961)  

Low mass ππ enhancement observed in the inclusive production, 
p + d → 3He + X, 3H + X (Ep=624-743 MeV, Berkeley)  
 X = π or 
        ππ (I=0) for 3He 
         ππ (I=1) for 3He and 3H 
Using the data of 3H production, one can determine the ππ (I=0) 
production cross section.
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phase-space volume 
adjusted to the data

phase space + π-π S-wave enhancement  
for aI=0= 3.9 fm (exp.~0.2fm)

p + d → 3He + π-π (I=0)  
Ep=624-743 MeV



ABC effect
A. Abashian, N.E. Booth, K.M. Crowe  
Possible anomaly in meson production in p+d collisions, PRL 5, 258 (1960)  
Anomaly in meson production in p+d collisions, PRL 7, 35 (1961)  

Low mass ππ enhancement observed in the inclusive production, 
p + d → 3He + X, 3H + X (Ep=624-743 MeV, Berkeley)  
 X = π or 
        ππ (I=0) for 3He 
         ππ (I=1) for 3He and 3H 
Using the data of 3H production, one can determine the ππ (I=0) 
production cross section. 
As the beam energies correspond to ΔΔ excitation in nucleus, the ππ 
enhancement is attributed to the ΔΔ excitations.  
→ precise measurements by WASA group (Bashkanov). 
 WASA@CELSIUS, PRL 102, 052301 (2009) 
 WASA@COSY, PRL 106, 242302 (2011)
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ABC effect → d* resonance
Double-pionic fusion of nuclear systems and the “ABC” effect 
 WASA@CELSIUS, PRL 102, 052301 (2009) 
 p+d → d+π0+π0+pspectator at Tp=1.03, 1.35 GeV  
 
The π0π0 enhancement is much larger than estimate in ΔΔ production 
 by Alvarez-Ruso, Oset, Hernandez, NPA 633 (1998) 519.  
A s-channel resonance at mR~2.36 GeV may explain the results. 

 ABC effect in basic double-pionic fusion: A new resonance? 
 WASA@COSY, PRL 106, 242302 (2011) 
 p+d → d+π0+π0+pspectator at Tp=1.0, 1.2, 1.4 GeV  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ABC effect → d* resonance
WASA@COSY, PRL 106, 242302 (2011) 
 p + n(d) → d + π0 + π0 (+pspectator) at Tp=1.0, 1.2, 1.4 GeV 

A di-baryon resonance, d* (I=0, Jπ=3+) (in pn and ΔΔ) is confirmed.
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ΔΔ contributions

d* : s-channel resonance  
mR=2.37 GeV and Γ=68 MeV



ABC effect → d* resonance
WASA@COSY, PLB 721 (2013) 229 
Isospin decomposition of the basic double-pionic fusion in the region of 
the ABC effect 
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pp → dπ+π0 (I=1)  
pn → dπ0π0 (I=0)  
pn → dπ+π- (I=0+1)

The (I=1) production is consistent with the ΔΔ production.



ABC effect → d* resonance
WASA@COSY+SAID, PRL 112, 202301 (2014) 
Evidence for a new resonance from polarized n-p scattering  
 d(↑) + p → np + pspectator 

 np analyzing power, Ay(θ), at Tn=1.108-1.197 GeV  
A phase shift analysis of 3D3 (3+) amplitudes shows a narrow resonance 
at M=2380 MeV and Γ~70 MeV.
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DΔ (ΔΔ)I=0 di-baryon



DΔ (ΔΔ)I=0 di-baryon

S=3, I=0  (Δ2)  bound state  
  → relatively narrow NNππ (I=0) resonance
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forbidden

forbidden

D. Sc Thesis by M.O. (1980)



�CM � �
�

i<j

(�a
i �a

j )(�k
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j ) = 8n� 2C6 +
4
3
S(S + 1)

4C6

C6 � C2[SU(6)cs] =
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6

R.L. Jaffe, PRL 38 (1977) 195

��(I = 0, S = 3) V = V0 � 0

��(I = 3, S = 0) V = V0 � 32

H = ��(I = S = 0) V = V0 � (�8)

V0 = 300/16 � 18(MeV)

�CM(�) = +8
�CM(N) = �8



DΔ (ΔΔ)I=0 di-baryon

S=3, I=0  (Δ2)  bound state

Relative wave function

No repulsive core100 200 MeV

7S3 phase shift
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Conclusion

!33

Simple quark model description of the di-baryon interaction 
seems to work very well. 
Di-baryon is supposed to be a compact six-quark like state, or 
at least it contains six-quark component predominantly. 
LQCD has confirmed the Pauli effect as well as the CMI that 
favors flavor anti-symmetric states. 
H (F=1) is the most-likely di-baryon. 
DΔ =(ΔΔ) (I=0, S=3) is another favorable state. 
The d* resonance at WASA-COSY is a strong candidate of a 
“compact” di-baryon.


