

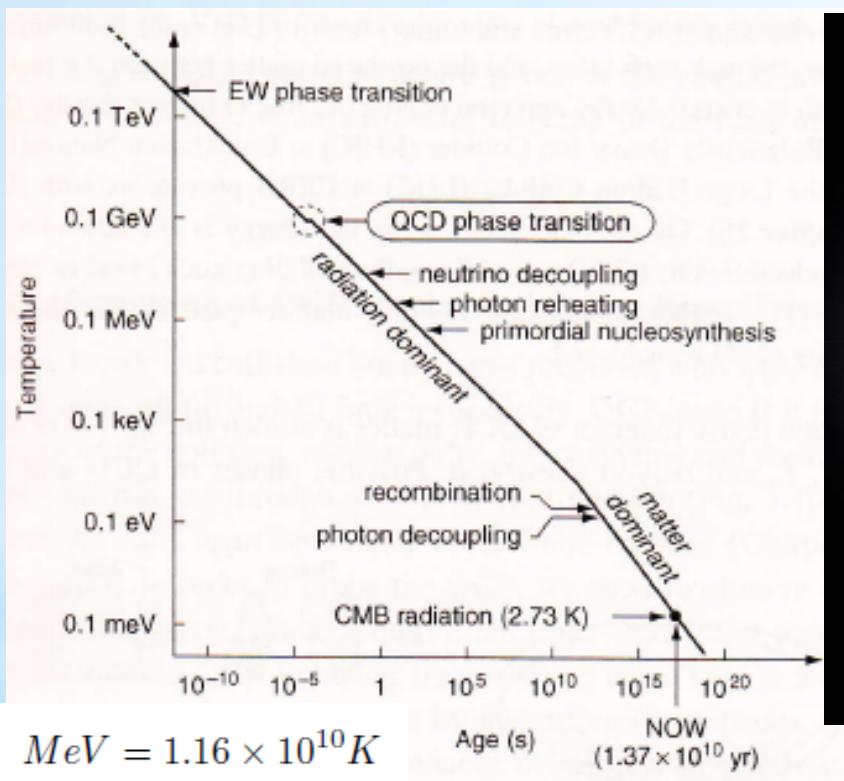
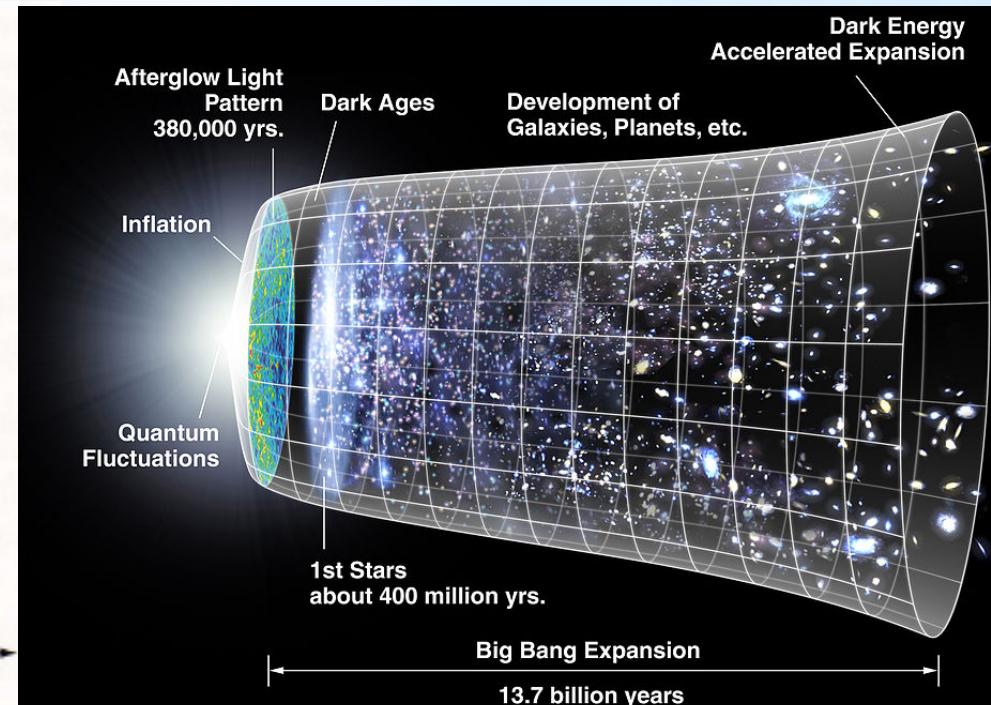
Entropy production in the early-cosmology pionic phase

Antonio Dobado, F. J. Llanes-Estrada and D. Rodríguez-Fernández

Departamento de Física Teórica I,
Universidad Complutense

**1st Hadron Spanish Network Days
and
Spanish-Japanese JSPS Workshop**
Valencia, Valencian Community (Spain), June 15-17, 2015

In the History of the Universe it is possible to distinguish different periods of time (epochs or eras) defined by important physical events:



Early epoch:

From the Electroweak phase transition to $T = 1 \text{ TeV}$ to $T = 1 \text{ GeV}$ ($t = 10^{-12}$ to 10^{-7} s)

After the Electroweak phase transition most of the particles have got masses

The Higgs H, the EW gauge bosons (W and Z), the top (t), button (b) and charm (c) quarks and the tau (τ) lepton decay very fast and don't survive this epoch.

Thus by the time $T \sim 1 \text{ GeV}$ we are left just with the quarks up (u), dwon (d) and strange (s), the electron (e), the muon (μ), the three neutrinos (ν) and their respective antiparticles and also photons (γ) and gluons (g)

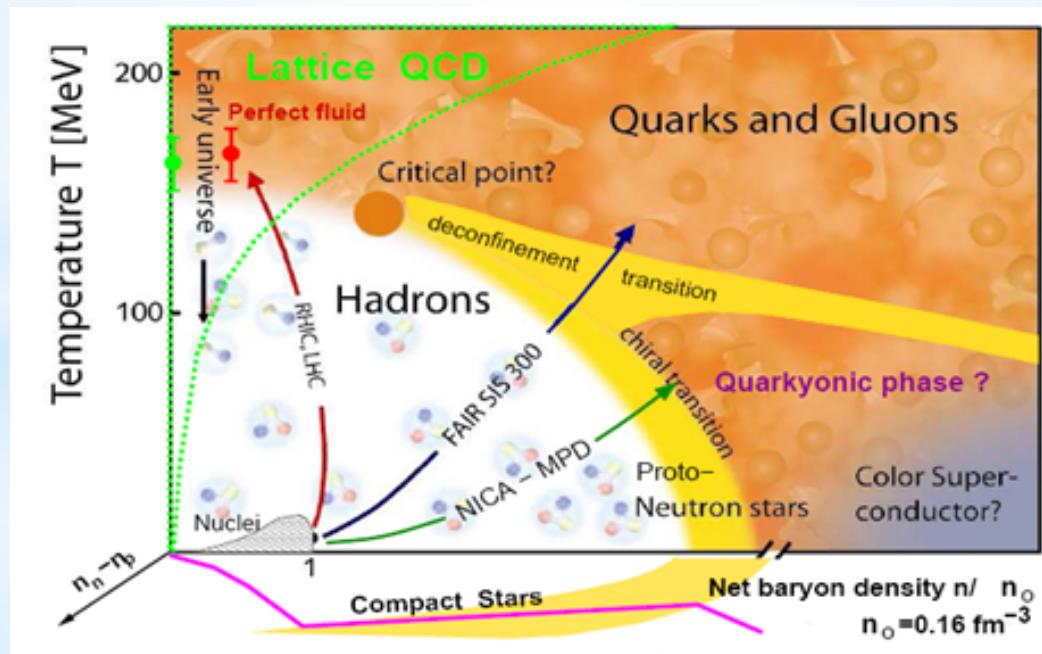
The quark-gluon plasma:

From $T = 1 \text{ GeV}$ to $T = T_c = 175 \text{ MeV}$

Accessible to RICH and LHC

Major components are: Quarks: u, d, and s, gluons, leptons and photons.

This epoch ends at the QCD phase transition (confinement and spontaneous chiral symmetry breaking), most probably a cross-over.

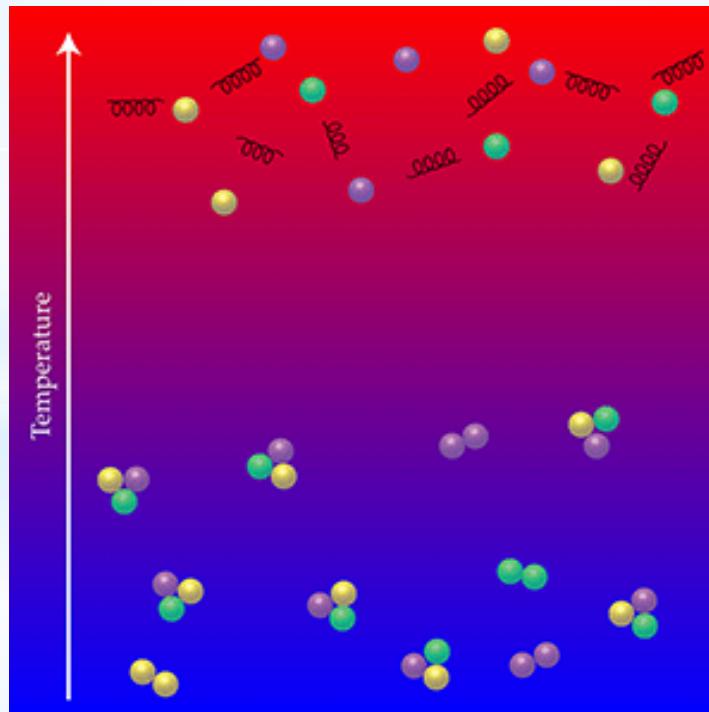


The QCD phase transition:

Around $T_c = 175$ MeV, $t = 10^{-6}$ s

Hadronization takes place: $q\bar{q} \rightarrow M$, $q q q \rightarrow B$, $gg \rightarrow G\dots$

Confinement and chiral symmetry breaking (condensates $\langle GG \rangle$ and $\langle u u + d d \rangle$)



The hadron era:

From $T=T_c = 175 \text{ MeV}$ ($t = 10^{-6} \text{ s}$) to $T = 1 \text{ MeV}$ ($t=1\text{s}$)

Most of hadrons decay very fast

Strong, electromagnetic, weak, ineractions still faster than cosmic expansion

The survival particles are pions, protons, neutrons, muons, electrons, neutrinos, photons and their corresponding antiparticles.

After some time even those hadrons annihilate

$$\text{A small baryon asymmetry remains } \eta = \frac{n_B - n_{\bar{B}}}{n_\gamma} \sim 6 \times 10^{-10}$$

About $T = 80 \text{ MeV}$ ($t = 10^{-6} \text{ s}$) pions and muons decouple from the photons and disappear (Beginning of the leptonic era) .

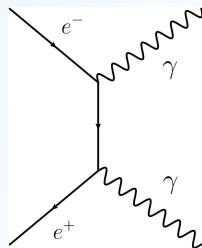
Some important events about $T = 1 \text{ MeV}$ ($t = 1 \text{ s}$):

Neutrino decoupling when weak interaction rate equals the cosmic expansion rate

$$\begin{aligned}\bar{\nu}\nu &\leftrightarrow e^+e^- \\ \nu e &\leftrightarrow \nu e\end{aligned}$$

$$\frac{\Gamma_{int}}{H} \simeq \frac{G_F^2 T^5}{T^2/m_{\text{Planck}}} \simeq \left(\frac{T}{1 \text{ MeV}} \right)^3$$

Photon reheating at $T = m_e = 0.5 \text{ MeV}$ ($t = 10 \text{ s}$) produced by electron-positron annihilation:



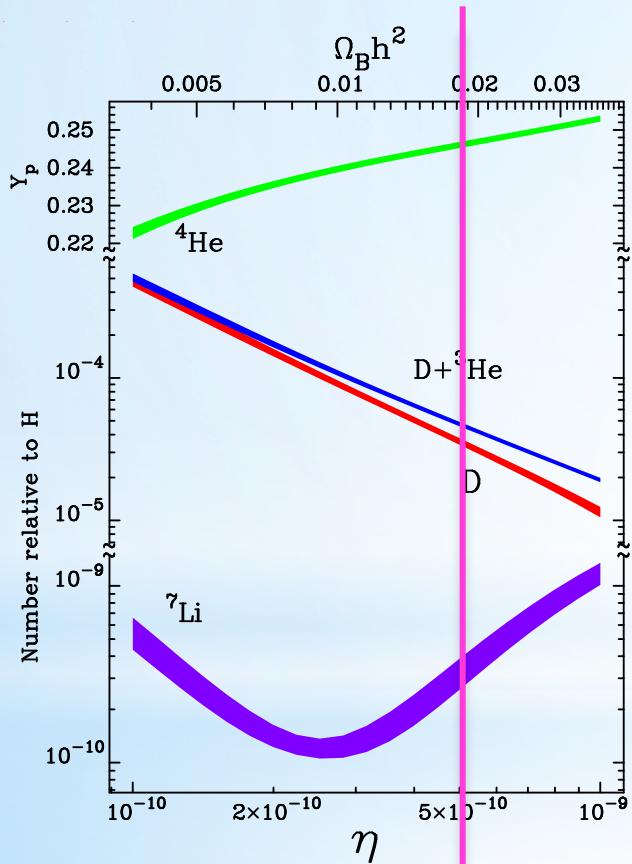
After that we are left just with many photons and a few protons, neutrons and electrons (remember baryonic asymmetry)

Neutrons decouple from protons (as neutrinos from electrons) and start to decay

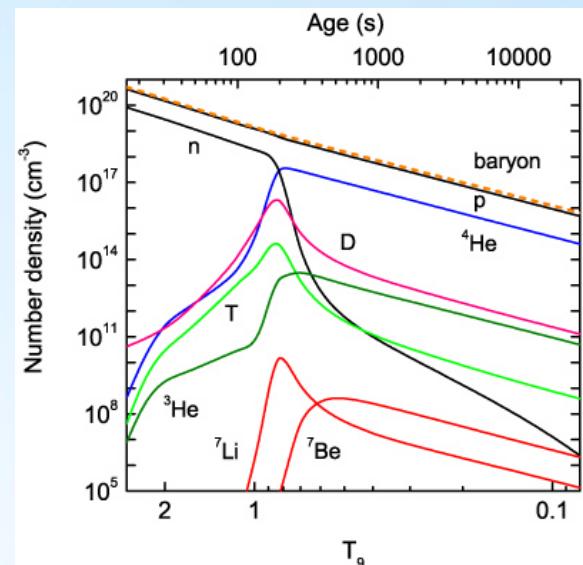
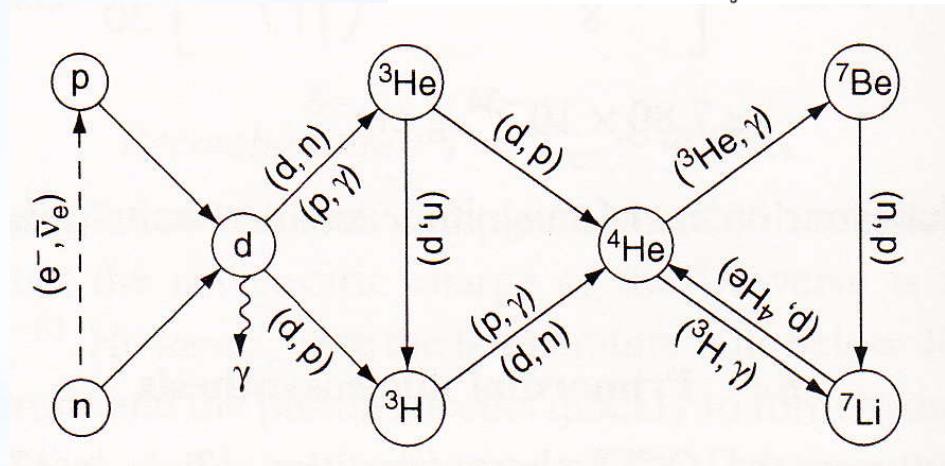
$$\frac{n_n}{n_p} = e^{-(m_n - m_p)/T} = e^{-Q/T}. \quad Q = m_n - m_p = 1.293 \text{ MeV}$$

Primordial Nucleosynthesis

From $T = 1 \text{ MeV}$ to $T = 0.1 \text{ MeV}$ ($t=1 \text{ s}$ to 100 s)
(Weinberg's famous three minutes)

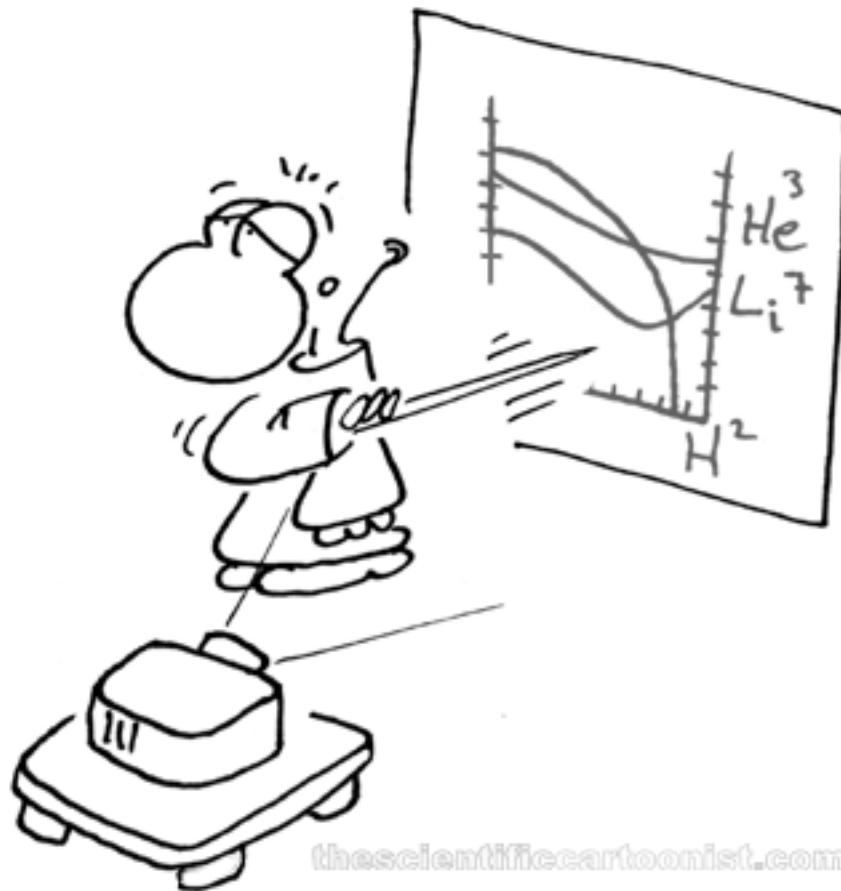


$$Y_p \simeq \frac{4 \cdot n_n/2}{n_n + n_p} = \frac{2(n_n/n_p)}{1 + (n_n/n_p)} = 0.25.$$



(Alpher, Bethe and Gamow)

Nucleus	$g(^A Z) = 2I + 1$	$B(^A Z), \text{ MeV}$	Decay mode
² H	3	2.22	stable
³ H	2	8.48	$\beta \rightarrow ^3\text{He}$ (12.6 yr)
³ He	2	7.72	stable
⁴ He	1	28.30	stable
⁶ Li	3	31.99	stable
⁷ Li	4	39.25	stable
⁷ Be	4	37.60	electron capture to ⁷ Li (53 days)
¹² C	1	92.16	stable



thescientificcartoonist.com

"The Big Bang produced Hydrogen, Helium, Deuterium and a small amount of Lithium. Unfortunately, it didn't generate enough of the last element for all our politicians."

Further important events

After $T = 1$ eV (1000 y) matter starts to dominate radiation.

End of the radiation era.

Begining of structure formation and BAO (t=7 10^4 y)

Recombination at $T = 0.3$ eV (t= 380.000 y) $p+e \rightarrow H+\gamma$

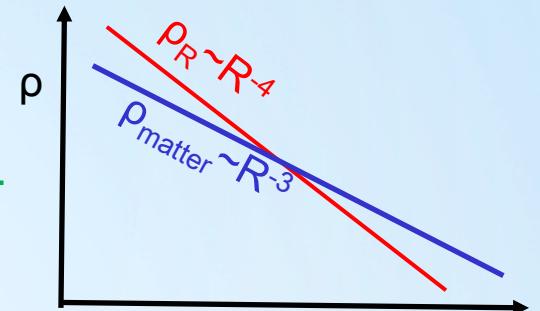
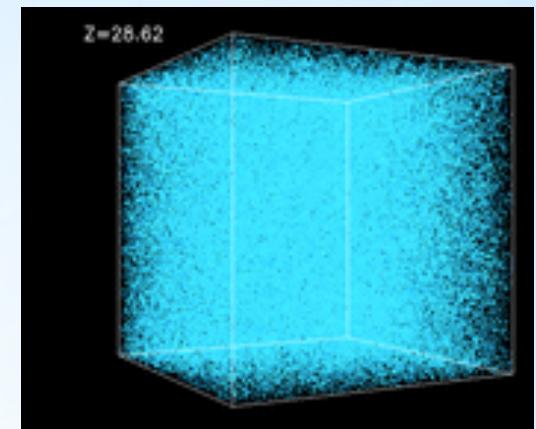
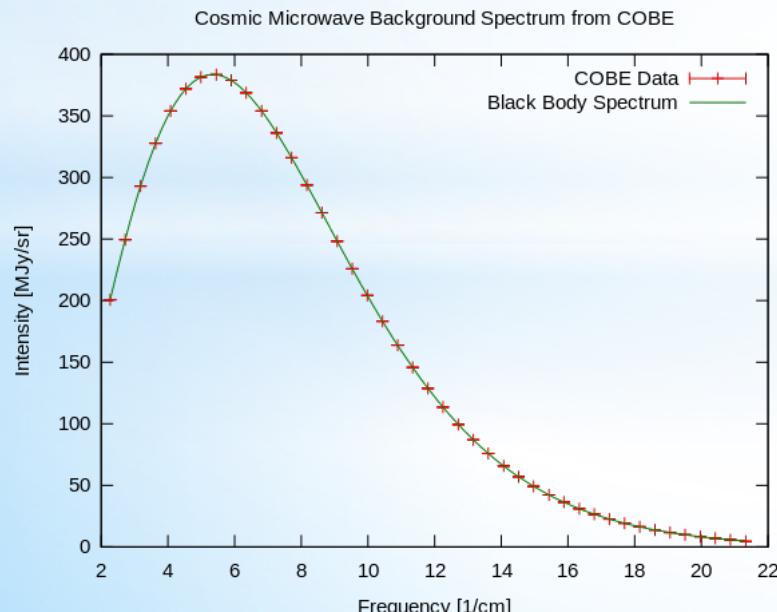
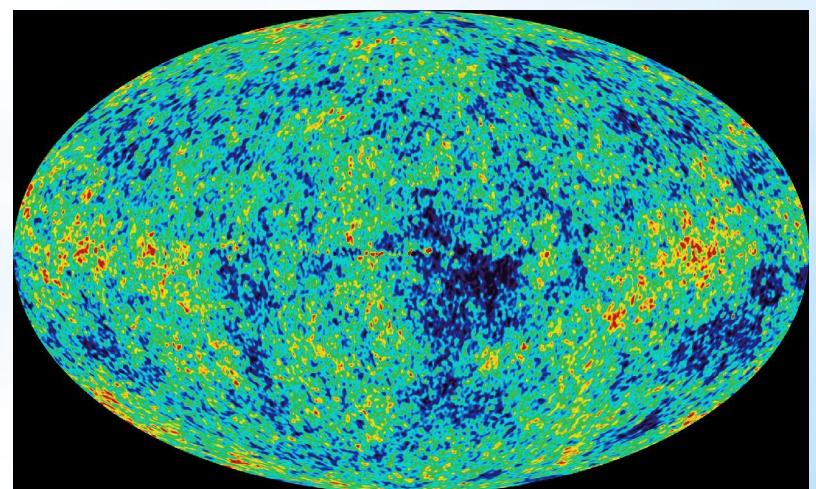
The Universe becomes neutral also locally.

And finally photon decoupling

Origin of the current Cosmic Microwave Background CMB

Perfect black body radiation at $T = 3000$ K (T= 2.7 K today)

Temperature fluctuations are of the order of 10^{-5} or lesser
(bound on previous departure from homogeneity)



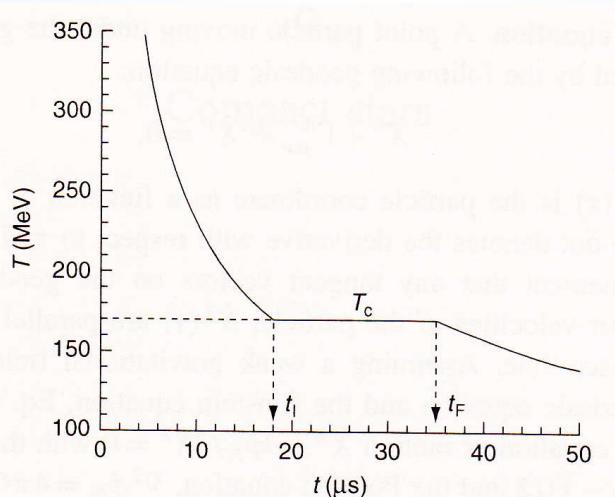
An important remark:

The QCD phase transition could produce big inhomogeneities because of the fluctuations
(in addition to those produced by inflation or other previous phase transitions)

Those inhomogeneities must be washed up at the level of the CMB radiation or lower

Dissipative processes during the hadron era could do the job

Estudying how this works is the main point of this work



Matter dominated era

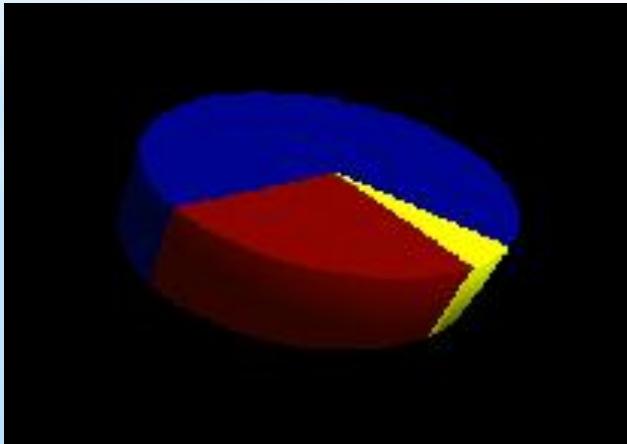
From $T = 379.000$ y to about 300 million years no brilliant single objects in the universe, just clouds of H and He (the Dark Eges)

At something about several hundred million years stars galaxy and star formation

9×10^9 y Sun formation

10^{10} y Earliest forms of life

10^{10} y Dark energy dominated era



5% Ordinary Matter
25% Dark Matter
70% Dark Energy

This is the 1st Hadron Spanish Network Days meeting!

The Hadron era in more detail:

From $T = 175$ MeV, $t = 10^{-6}$ s, $R_H = 10$ km, $M_H \sim M_\odot$
(just after the QCD phase transition)

Flat FRW metric $ds^2 = dt^2 - a^2(t) [dr^2 + r^2 (d\theta^2 + \sin^2 \theta d\phi^2)]$ ($\kappa = 0$)

Einstein Field Equations $R_{ik} - \frac{1}{2}g_{ik}R = 8\pi G T_{ik}$ One hundred years old!

Friedmann equation: $\left(\frac{\dot{a}}{a}\right)^2 = \frac{8\pi G}{3}\rho$ and the matter equation: $\frac{d\rho}{dt} = -\frac{3\dot{a}}{a}(\rho + P)$

Total density: $\rho = \rho_\gamma + \rho_{\nu, \bar{\nu}} + \rho_{e^\pm} + \rho_{\mu, \bar{\mu}} + \rho_{\pi^\pm, \pi^0} + \rho_{N, \bar{N}} + \dots$

Strong, electromagnetic and weak interactions rates are much faster than the cosmic expansion rates:

Thus we assume local thermodynamics equilibrium:

$$f_i(\mathbf{r}, \mathbf{p}, t) = \frac{1}{e^{(p_\alpha U^\alpha(\mathbf{r}, t) - \mu_i(\mathbf{r}, t))/T(\mathbf{r}, t)} \pm 1}$$

Chemical potentials negligible

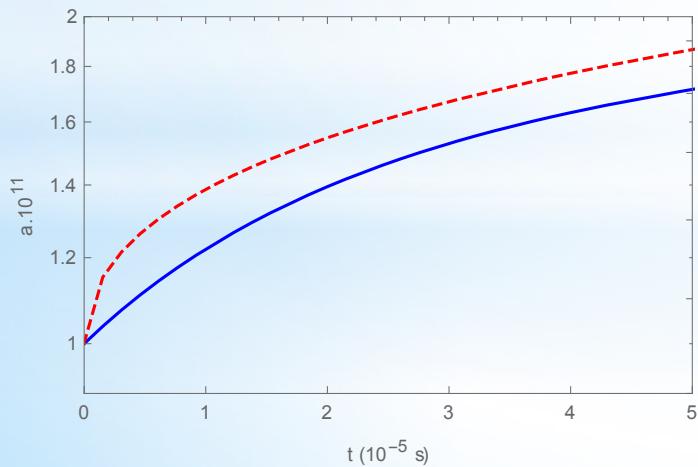
$$\rho = \sum_i \rho_i = \sum_i \frac{g_i}{(2\pi)^3} \int d^3p E f_i(\mathbf{r}, \mathbf{p}, t)$$

Solving Friedmann and matter equations:

$\pi^0 \leftrightarrow \gamma\gamma$	$NN \leftrightarrow NN$	$e\pi \leftrightarrow e\pi$
$\pi\pi \leftrightarrow \pi\pi$	$N\bar{N} \leftrightarrow \gamma\gamma$	$ee \leftrightarrow ee$
$\pi^+ \leftrightarrow \mu^+ \nu_\mu$	$\mu^+ \leftrightarrow e^+ \nu_e \bar{\nu}_\mu$	$e\gamma \leftrightarrow e\gamma$
$\pi\pi \leftrightarrow \gamma\gamma$	$\mu\pi \leftrightarrow \mu\pi$	$\gamma\gamma \leftrightarrow e^- e^+$
$\nu_e \bar{\nu}_e \leftrightarrow e^+ e^-$	$\mu^- \gamma \leftrightarrow \mu^- \gamma$	$\mu\mu \leftrightarrow \mu\mu$
$\nu_\mu \bar{\nu}_\mu \leftrightarrow \mu^+ \mu^-$	$\gamma\gamma \leftrightarrow \mu^- \mu^+$	$\mu e \leftrightarrow \mu e$

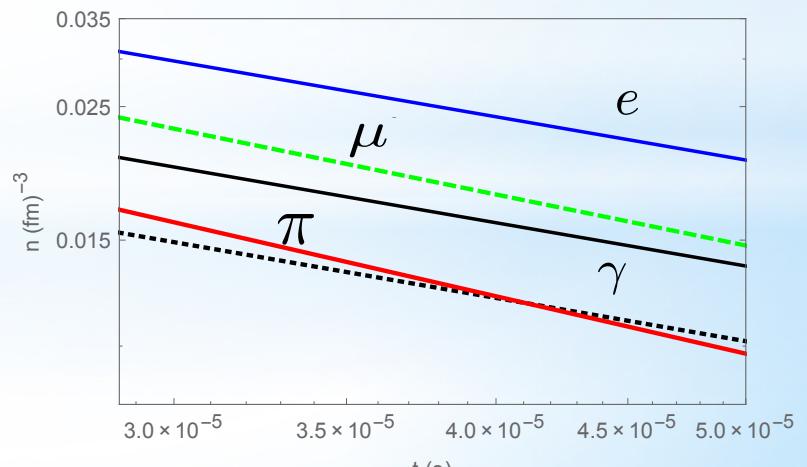
$$P = \sum_i P_i = \frac{1}{3} \sum_i \int d^3p f_i(\mathbf{r}, \mathbf{p}, t) \frac{|\mathbf{p}|^2}{E}$$

$$\frac{dT}{dt} = -\frac{3\dot{a}}{a}(\rho + P) \frac{dT}{d\rho}$$



$$t_{T=175\text{MeV}} = 0 \text{ s}$$

$$t_{T=100\text{MeV}} = 5 \times 10^{-5} \text{ s}$$



$$n = \frac{3}{4\pi r_0^3} = 0.122 \text{ fm}^{-3} = 1.22 \cdot 10^{44} \text{ m}^{-3}$$

Thermodynamics:

Adiabatic, homogeneous expansion (entropy conservation)

$$TdS = d(\rho V) + PdV.$$

$$\pi^+ \pi^- \leftrightarrow \pi^0 \pi^0$$

$$\gamma\gamma \leftrightarrow \pi\pi$$

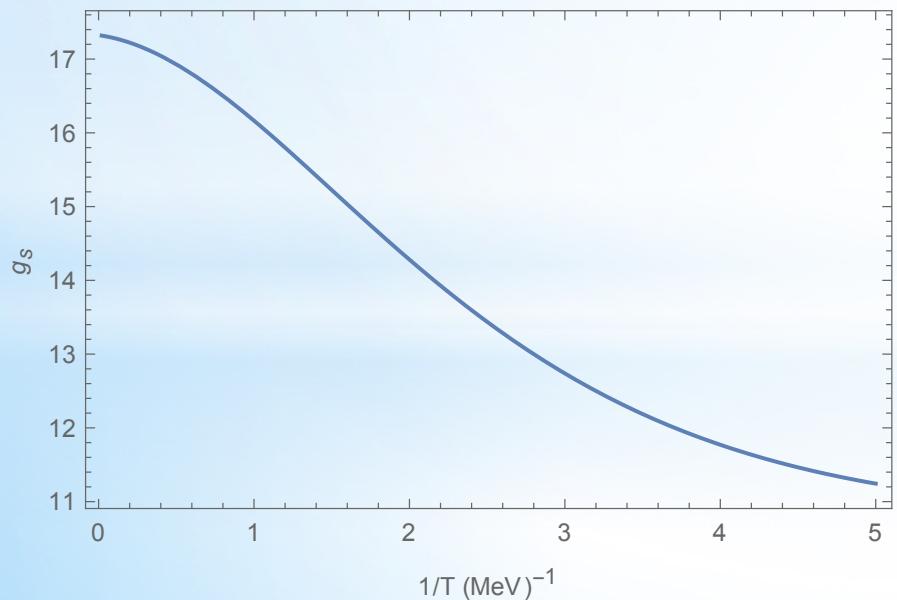
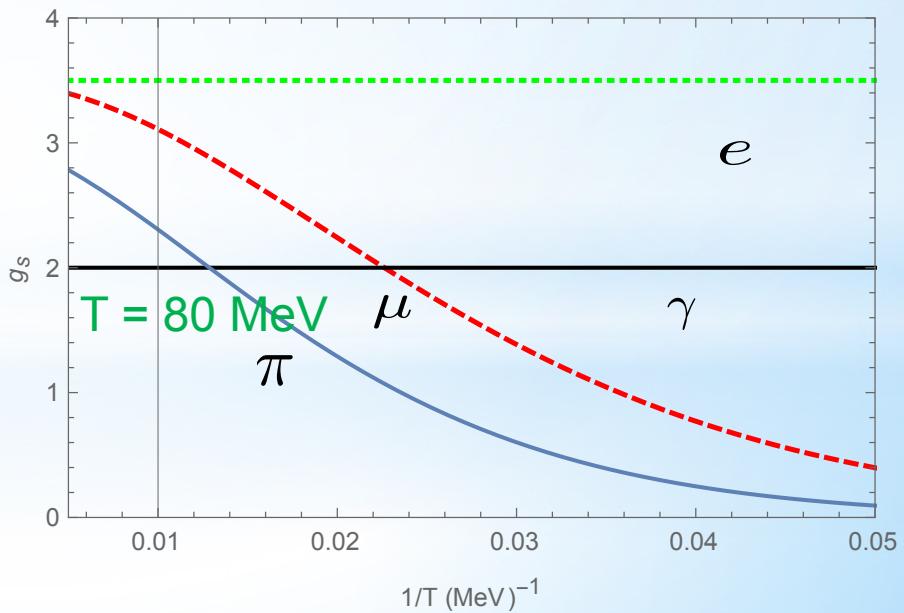
$$s = \frac{1}{T}(\rho + P) = \frac{dP}{dT}$$

$$s = \frac{\rho_1 + \dots + \rho_n + P_1 + \dots + P_n}{T}$$

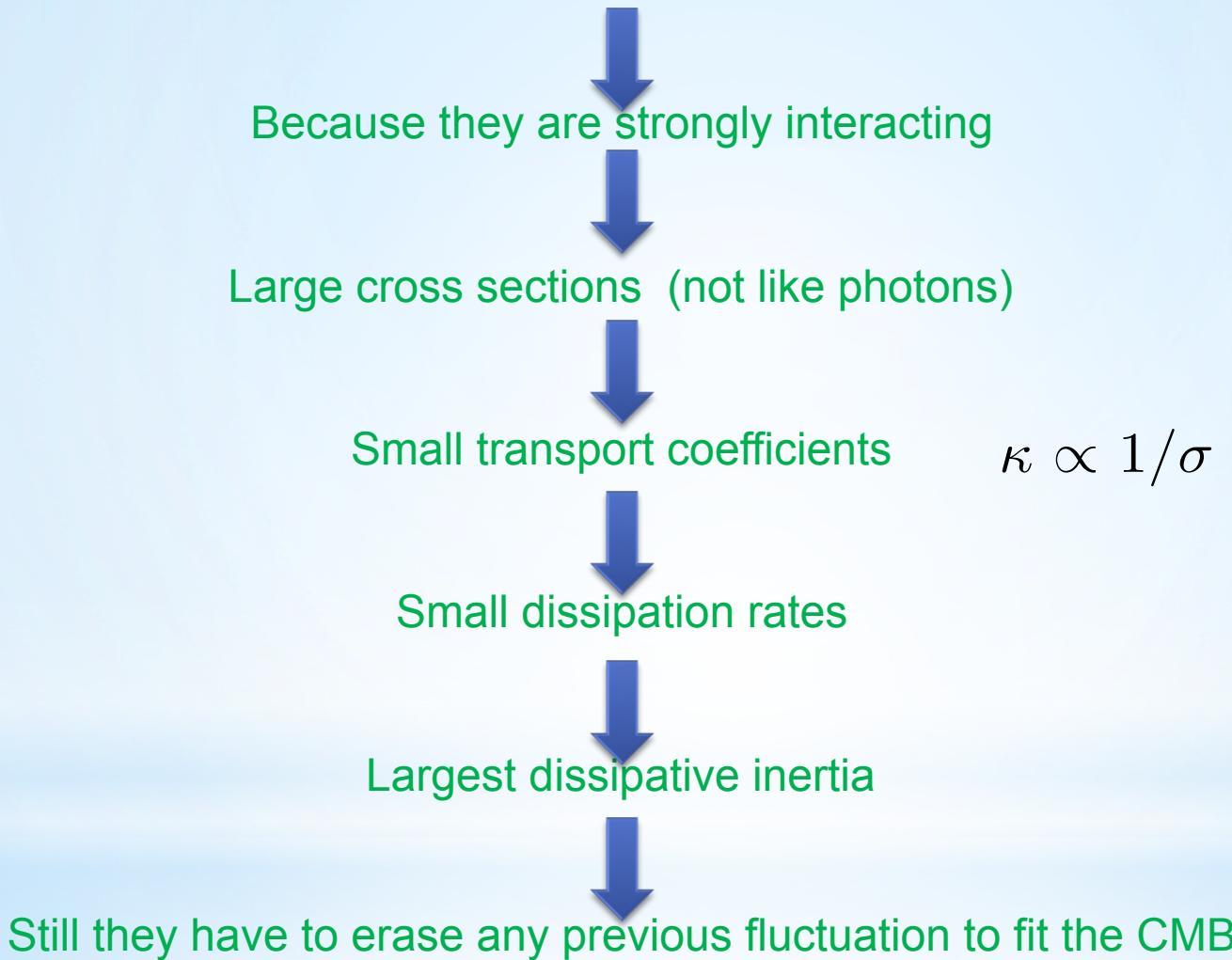
$$sa^3 = s_0 a_0^3$$

Effective degrees of freedom

$$s(T) = g_s \frac{2\pi^2}{45} T^3 \quad \xrightarrow{\hspace{1cm}} \quad g_s(T)$$



Why having a small pionic era ($T = 175$ to $T = 80$ Mev) is relevant?



Dissipation of thermal fluctuations

$$T(\mathbf{r}, t) = T_{back}(t) + \delta T(\mathbf{r}, t)$$

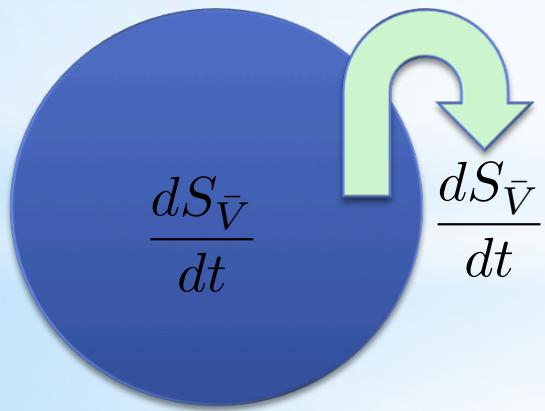
$$s(\mathbf{r}, t) = s_{back}(t) + \delta s(\mathbf{r}, t).$$

Heat equation

$$\Delta(\delta T(\mathbf{r}, t)) = \frac{\kappa(T)}{c_p(T)} \frac{\partial(\delta T(\mathbf{r}, t))}{\partial t}$$

Thermal conductivity

$$\frac{dS_T}{dt} = \frac{dS_{\bar{V}}}{dt} + \frac{dS_V}{dt}$$



$$\delta T(r, 0) = \delta T_0 e^{-\frac{r^2}{2R^2}}$$

$\kappa(T)$

specific heat
at constant pressure

$$c_p(T) = \left. \frac{\partial s_{back}(T)}{\partial T} \right|_P$$

$$\begin{aligned} \frac{dS_{\bar{V}}}{dt} &= - \int_{\partial V} \mathbf{j}_s \cdot \mathbf{n} d\Sigma \\ \frac{dS_V}{dt} &= \int_V \sigma_s dV. \end{aligned}$$

$$\frac{dS_T}{dt} = \frac{d}{dt} \int_V s_T dV = - \int_{\partial V} d\Sigma \mathbf{j}_s \cdot \mathbf{n} + \int_V dV \sigma_s$$

$$\frac{ds_T}{dt} = - \nabla \cdot \mathbf{j}_s + \sigma_s$$

Gauss Law

\mathbf{j}_e heat current

$$\sigma_s = \mathbf{j}_e \cdot \nabla \left(\frac{1}{T} \right)$$

Fourier Law

First Law

$$dU = T dS_T = (\mathbf{j}_e \cdot \mathbf{n}) d\Sigma dt$$

Integrating and using Gauss Theorem

$$\Delta S_T = \int_{\partial V} d\Sigma dt \frac{\mathbf{j}_e \cdot \mathbf{n}}{T} = \int_V dV dt \nabla \cdot \left(\frac{\mathbf{j}_e}{T} \right)$$

Using Fourier Law

$$\Delta S_T = \int dV dt \nabla \cdot \left(-\frac{1}{T} \kappa(T) \nabla T \right)$$

Leibniz Rule

$$\Delta S_T = \int dV dt \frac{\kappa(T)}{T^2} (|\nabla \delta T|^2 - T \Delta \delta T) \quad \Delta S_T \geq 0$$

Thus:

$$\begin{aligned} \sigma_s(r, t) &= \frac{\kappa(T)}{T^2} |\nabla \delta T(r, t)|^2, \\ -\nabla \cdot \mathbf{j}_s(r, t) &= \frac{\kappa(T)}{T} \Delta \delta T(r, t). \end{aligned}$$

Entropy produced inside V:

$$\Delta S_V(\delta T_0) = \int dV dt \sigma_s(r, t)$$

Background entropy density

$$S_{back}(R, T_{back}) \simeq \frac{4}{3} \pi \left(\sqrt{2} R \right)^3 s_{back}(T_{back})$$

$$\Delta S_V / S_{back}$$

Viscous Hydrodynamics and transport coefficients:

$$T^{\mu\nu} = w u^\mu u^\nu - P \eta^{\mu\nu} + \tau^{\mu\nu}$$

$$n^\mu = n u^\mu + \nu^\mu .$$

$$s^\mu = s u^\mu - \frac{\mu}{T} \nu^\mu$$

$$\partial_\mu s^\mu \geq 0 \quad \text{Second Law}$$

Shear viscosity

Bulk viscosity

$$\begin{aligned} \tau^{\mu\nu} &= 2\eta \nabla^{\{\mu} u^{\nu\}} + \left(\zeta - \frac{2}{3}\eta \right) \partial_\alpha u^\alpha \Delta^{\mu\nu} \\ \nu_\mu &= -\kappa \left(\frac{nT}{w} \right)^2 \nabla_\mu \left(\frac{\mu}{T} \right) , \end{aligned}$$

Thermal conductivity

$$w = \epsilon + P$$

Entalpy

$$P = P(\epsilon)$$

Equation
of state

$$\tau^{\mu\nu} u_\mu = 0$$

$$\nu^\mu u_\mu = 0$$

Landau-Lifshitz frame

Dissipative contribution to the
energy-momentum tensor and current

$$\partial_\mu T^{\mu\nu} = 0$$

Navier-Stokes
Equations

Kinetic Theory:

Chapman-Enskog

$$n^\mu(t, \mathbf{x}) = g \int d^3p \frac{p^\mu}{(2\pi)^3 E_p} f_p(t, \mathbf{x})$$

$$f_p(t, \mathbf{x}) = n_p(t, \mathbf{x}) + f_p^{(1)}(t, \mathbf{x})$$

$$T^{\mu\nu}(t, \mathbf{x}) = g \int d^3p \frac{p^\mu p^\nu}{(2\pi)^3 E_p} f_p(t, \mathbf{x})$$

$$n_p(t, \mathbf{x}) = \frac{1}{e^{\beta(E_p - \mu)} - 1} \quad \text{Bose-Einstein}$$

$$\tau^{\mu\nu}(t, \mathbf{x}) = g \int d^3p \frac{p^\mu p^\nu}{(2\pi)^3 E_p} f_p^{(1)}(t, \mathbf{x})$$

$$\nu^\mu(t, \mathbf{x}) = g \int d^3p \frac{p^\mu}{(2\pi)^3 E_p} f_p^{(1)}(t, \mathbf{x})$$

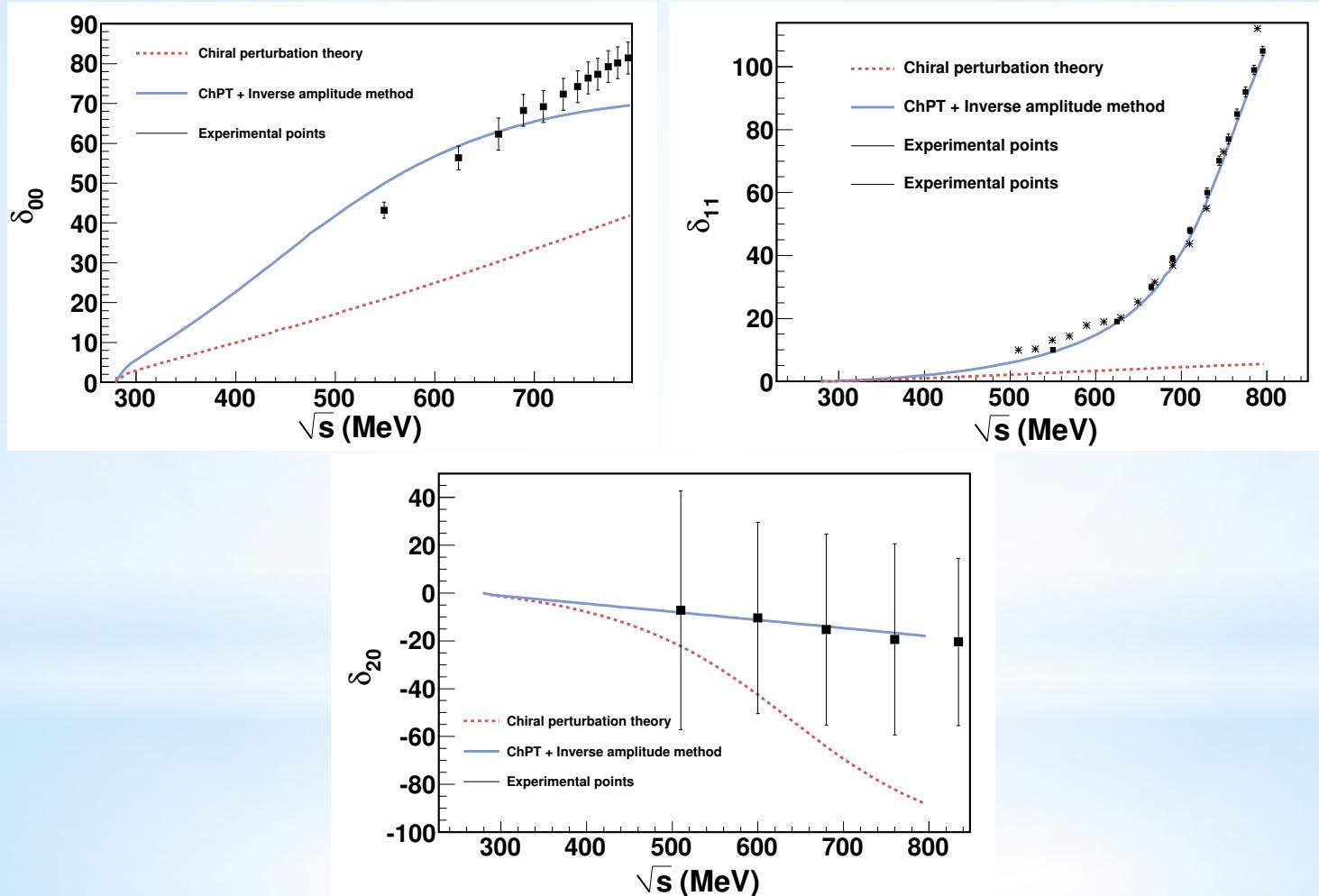
Viscous contribution to the energy-momentum tensor and current

$$\frac{df_p}{dt} = C[f_3, f_p] \quad \text{Boltzmann-Uehling-Uhlenbeck Equation}$$

$$C[f_3, f_p] = \frac{g_3}{1 + \delta_{3,p}} \int d\Gamma_{12,3p} [f_1 f_2 (1 + f_3)(1 + f_p) - f_3 f_p (1 + f_1)(1 + f_2)]$$

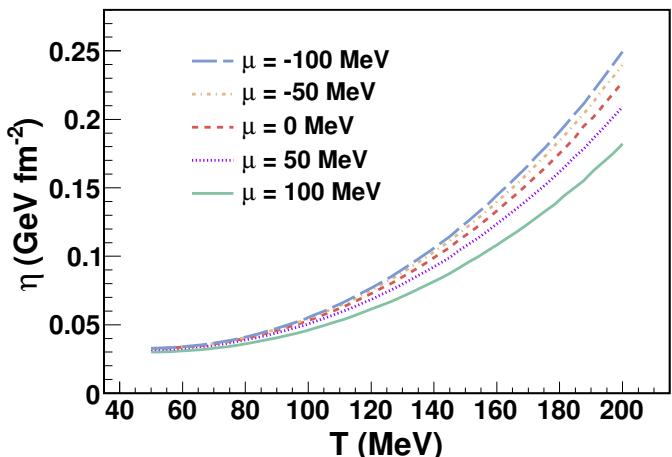
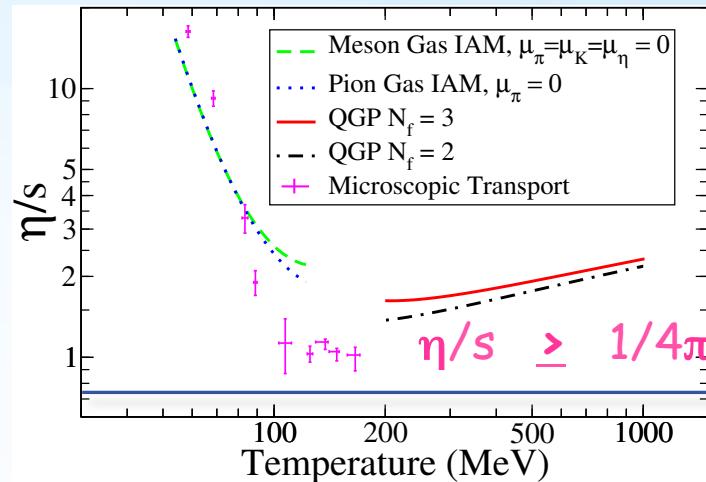
$$d\Gamma_{12,3p} \equiv \frac{1}{2E_p} \overline{|T|^2} \prod_{i=1}^3 \frac{d\mathbf{k}_i}{(2\pi)^3 2E_i} (2\pi)^4 \delta^{(4)}(k_1 + k_2 - k_3 - p)$$

ChPT plus the IAM method fit very well pion scattering at the required energies

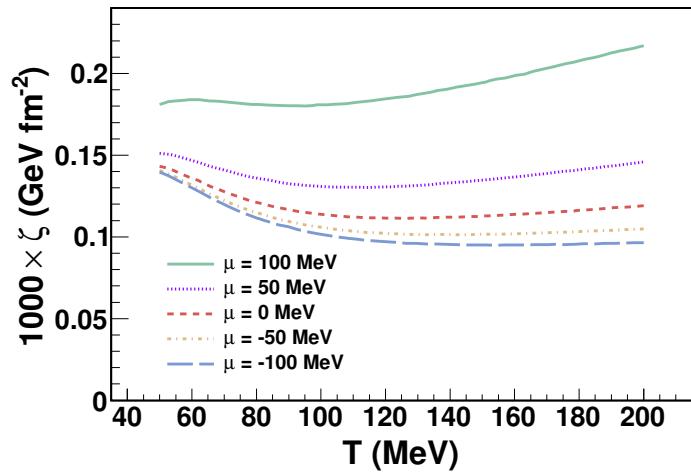
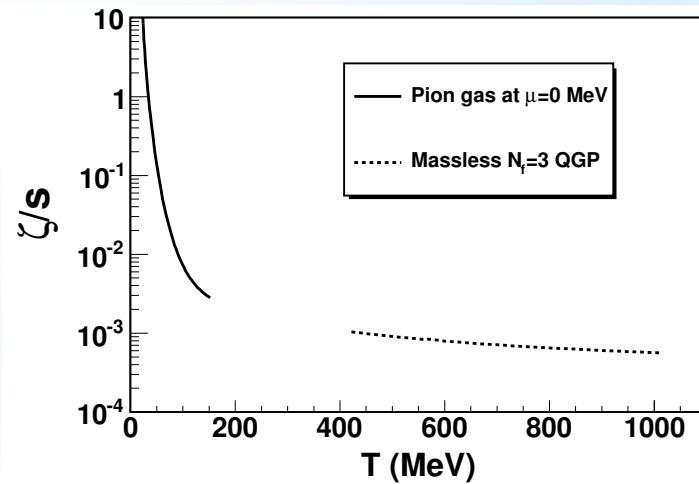


Transport coefficients as function of the temperature

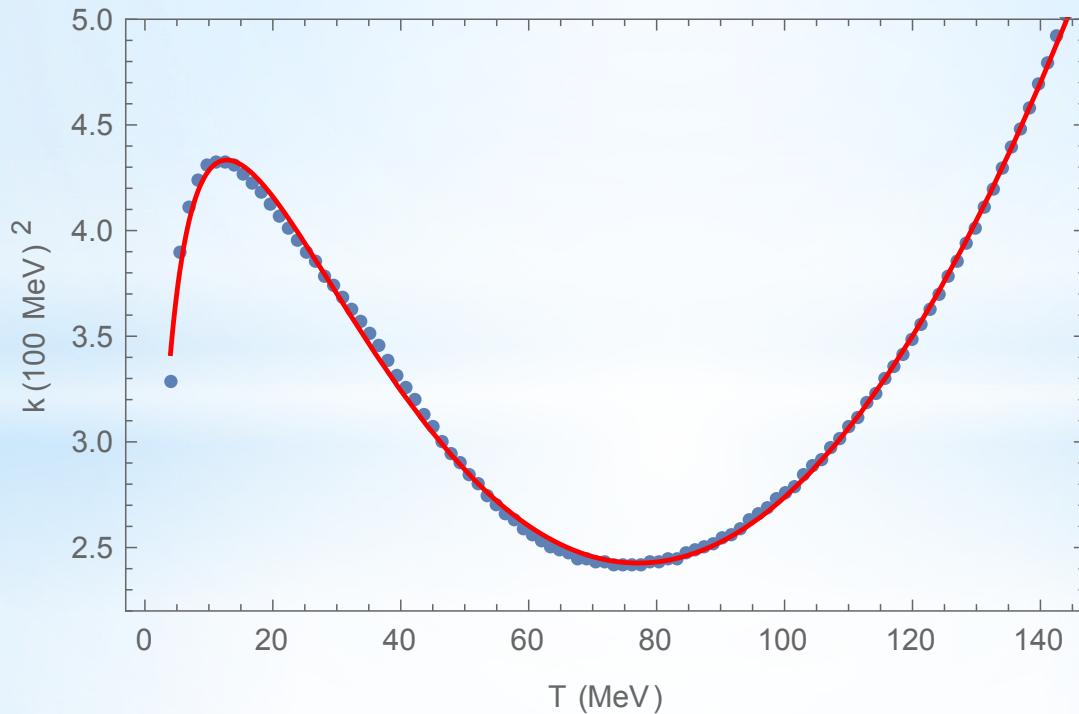
Kovtun, Son and Starinets bound



KSS



Heat conductivity

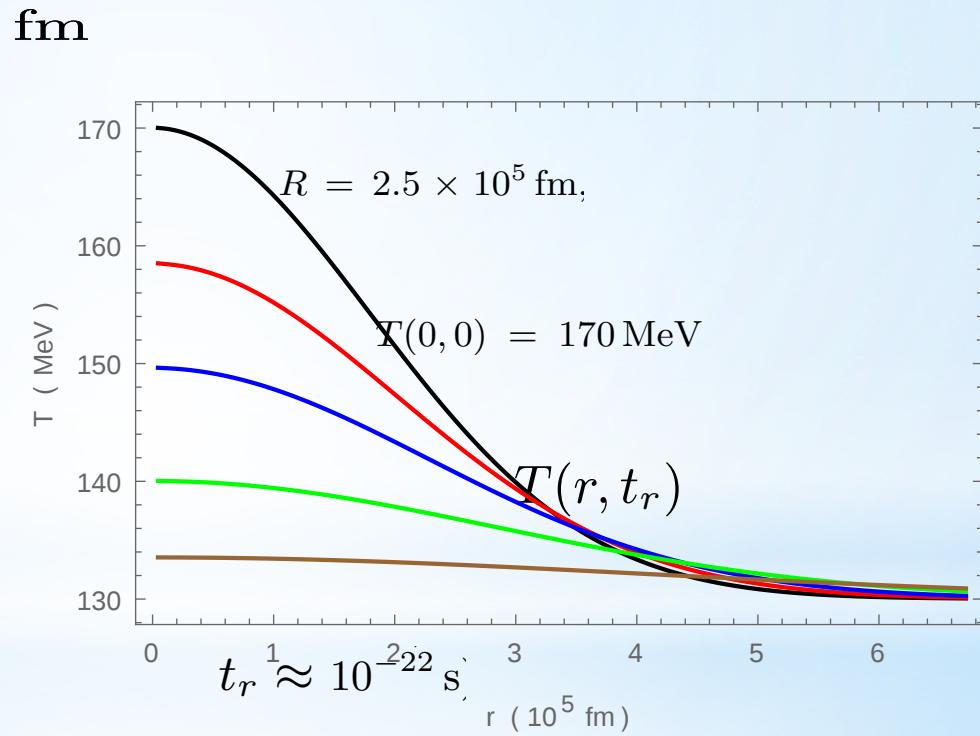


$$m_\pi \simeq f_\pi$$

$\Delta S_V/S_{back}$
 $\Delta S_V/S_{back}$ (in units of 10^{-3})

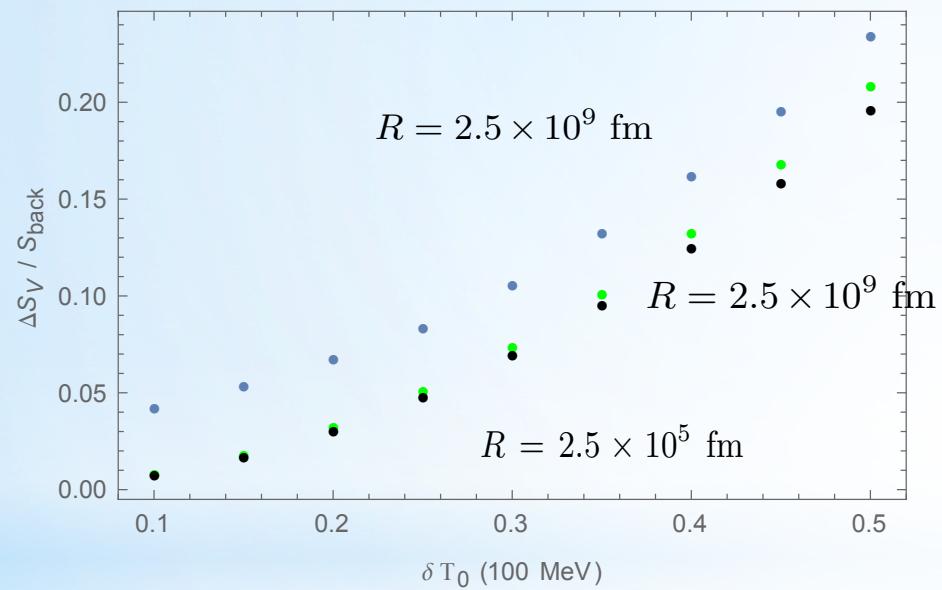
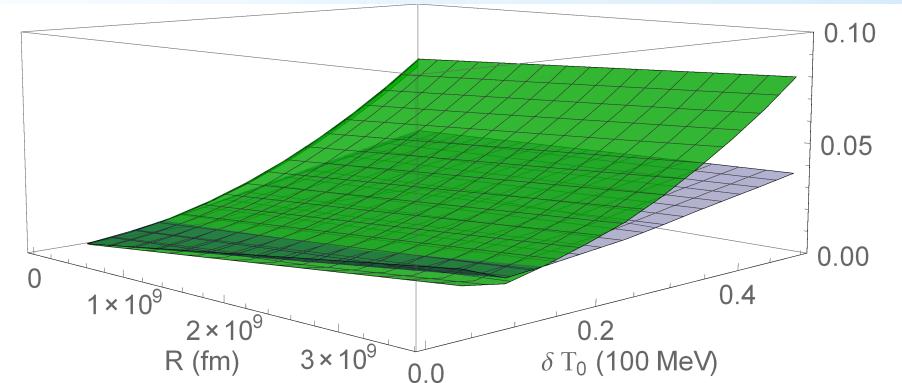
T_{back}	δT_0	R_1	R_2	R_3	R_4
138	35	32.6	35.1	35.1	46.1
	30	24.0	25.8	25.8	35.3
	25	16.6	17.9	17.9	28.5
	20	10.6	11.5	11.5	22.4
	15	5.98	6.44	6.44	17.7
	10	2.66	2.86	2.86	19.8
	5	0.7	0.7	0.7	11.4
100	50	196.0	208.4	208.4	234.4
	45	158.4	168.3	168.3	195.5
	40	124.7	132.4	132.4	162.0
	35	95.1	100.9	100.9	132.4
	30	69.6	73.7	73.7	105.5
	25	48.0	50.9	50.9	83.4
	20	30.5	32.3	32.3	67.3
	15	17.0	18.0	18.0	53.5
	10	7.5	7.9	7.9	42.4
	5	1.9	2.0	2.0	49.7

MeV



$$\Delta S_V / S_{back}$$

$$T_{back} = 100 \text{ MeV}$$



Summary and open questions

After the QCD phase transition there was a small period of time where pions carried an important fraction of the entropy of the universe (more than photons!)

That era lasted from $T = 175$ Mev to $T = 80$ MeV ($t = 10^{-6}$ s to 5×10^{-5} s)

In that period of time pions interactions dominated dissipative processes

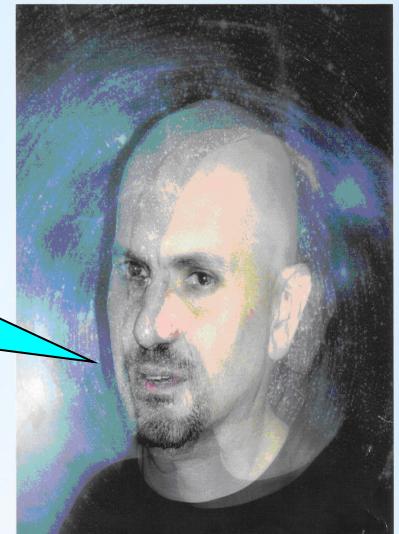
The physics of this era is well known but not very well developed

As the density is relatively small kinetic theory can be applied

It could be used to study entropy production by dissipation and to set bounds on the fluctuation spectrum at the end of the QCD phase transition to make them compatible with CMB

More work is needed in that interesting direction

**Thank you very much
for your attention**



Brief thermal history of the Universe

event	time	z	T
Planck time graviton decoupling	10^{-43} s	10^{37}	10^{19} GeV (10^{31} K)
GUT/Inflation/baryogenesis	10^{-35} s	10^{32}	10^{14} GeV (10^{26} K)
EW unification	10^{-12} s	10^{21}	10^3 GeV (10^{15} K)
Quark-hadron transition	10^{-6} s	10^{18}	1 GeV (10^{12} K)
Neutrino decoupling	1 s	10^{15}	1 MeV (10^9 K)
e^+e^- annihilation	1 s	10^{15}	1 MeV (10^9 K)
nucleosynthesis	1-100 s	10^{14}	0.1-1 MeV (10^8 - 10^9 K)
Matter-radiation equality	10^3 years	10^4	1 eV (10^{31} K)
recombination	10^5 years	10^3	10^{-1} eV (10^3 K)
photon decoupling	10^5 years	10^3	10^{-1} eV (10^3 K)

Quiral Perturbation Theory (Momentum and mass expansion)

$$t_{IJ} \simeq t_{IJ}^{(0)} + t_{IJ}^{(1)} + t_{IJ}^{(2)} + \dots$$

$$\begin{aligned} \text{Im}t_{IJ}^{(0)} &= 0 \\ \text{Im}t_{IJ}^{(1)} &= \sigma_{\alpha\beta} t_{IJ}^{(0)2} \\ \text{Im}(t_{IJ}^{(2)} + t_{IJ}^{(1)}) &= \sigma_{\alpha\beta} (t_{IJ}^{(0)2} + 2t_{IJ}^{(0)} \text{Re}t_{IJ}^{(1)}) \simeq \sigma_{\alpha\beta} |t_{IJ}^{(0)} + t_{IJ}^{(1)}|^2 \end{aligned}$$

The Inverse Amplitude Method

$$t_{IJ}(s) = C_0 + C_1 s + C_2 s^2 + \frac{s^3}{\pi} \int_{(M_\alpha + M_\beta)^2}^{\infty} \frac{\text{Im}t_{IJ}(s') ds'}{s'^3 (s' - s - i\epsilon)} + LC(t_{IJ})$$

$$t_{IJ}^{(0)} = a_0 + a_1 s$$

$$t_{IJ}^{(1)} = b_0 + b_1 s + b_2 s^2 + \frac{s^3}{\pi} \int_{(M_\alpha + M_\beta)^2}^{\infty} \frac{\text{Im}t_{IJ}^{(1)}(s') ds'}{s'^3 (s' - s - i\epsilon)} + LC(t_{IJ}^{(1)})$$

Dobado and Peláez

$$G(s) = t_{IJ}^{(0)2} / t_{IJ}$$

$$\text{Im}G = -t_{IJ}^{(0)2} \frac{\text{Im}t_{IJ}}{|t_{IJ}|^2} = -t_{IJ}^{(0)2} \sigma = -\text{Im}t_{IJ}^{(1)}$$

$$G(s) = G_0 + G_1 s + G_2 s^2 + \frac{s^3}{\pi} \int_{(M_\alpha + M_\beta)^2}^{\infty} \frac{\text{Im}G(s') ds'}{s'^3 (s' - s - i\epsilon)} + LC(G) + PC$$

$$\frac{t_{IJ}^{(0)2}}{t_{IJ}} \simeq a_0 + a_1 s - b_0 - b_1 s - b_2 s^2$$

$$- \frac{s^3}{\pi} \int_{(M_\alpha + M_\beta)^2}^{\infty} \frac{\text{Im}t_{IJ}^{(1)}(s') ds'}{s'^3 (s' - s - i\epsilon)} - LC(t_{IJ}^{(1)}) + PC \simeq t_{IJ}^{(0)} - t_{IJ}^{(1)}$$

$$t_{IJ} \simeq \frac{t_{IJ}^{(0)2}}{t_{IJ}^{(0)} - t_{IJ}^{(1)}}$$

$$\text{Im}t_{IJ} = \sigma_{\alpha\beta} |t_{IJ}|^2$$

The Inverse Amplitude Method

Lowest order ChPT (Weinberg Theorems) is only valid at very low energies.

However second order ChPT supplemented with Dispersion Relations (the Inverse amplitude method) makes it possible a simultaneous description of $\pi\pi \rightarrow \pi\pi$ and $\pi K \rightarrow \pi K$ up to 800-1000 MeV including resonances

