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In the History of the Universe it is possible to distinguish different 
periods of time (epochs or eras) defined by important physical events: 
  

  



Early epoch: 
 
From the Electroweak phase transition to T = 1 TeV to T = 1 GeV (t = 10-12   to 10-7  s)  
 
After the Electroweak phase transition most of the particles have got masses  
 
The Higgs H, the EW gauge bosons (W and Z), the top (t), button (b) and charm (c ) 
quarks and the tau (τ) lepton decay very fast and don’t survive this epoch. 
 
Thus by the time T ~ 1 GeV we are left just with the quarks up (u), dwon (d) and 
strange (s), the electron (e), the muon (µ), the three neutrinos (ν) and their respective 
antiparticles and also photons (γ) and gluons (g) 



The quark-gluon plasma: 
 
From T =  1 GeV to T = Tc = 175 MeV 
 
Accesible to RICH and LHC 
 
Major components are: Quarks: u, d, and s, gluons, leptons and photons.   
 
This epoch ends at the QCD phase transition (confinement and spontaneous  
chiral symmetry breaking), most probably a cross-over. 



The QCD phase transition: 
 
Around   Tc = 175 MeV, t = 10-6  s  
 
Hadronization takes place: q q  è M, q q q à B, gg è G… 
 
Confinement and chiral symmetry breaking (condensates <GG> and <u u + d d>) 
 
 
 
 



The hadron era: 
 
From T=Tc = 175 MeV   (t = 10-6  s) to T = 1 MeV (t=1s) 
 
Most of hadrons decay very fast 
 
Strong, electromagnetic, weak, ineractions still faster than cosmic expansion 
 
The survival particles are pions, protons, neutrons, muons, electrons, neutrinos, 
photons and their corresponding antiparticles.  
 
After some time even those hadrons annihilate 
 
A small baryon asymmetry  remains                           ~  6 X 10-10      
 
 

About  T = 80 MeV (t = 10-6  s)  pions and muons decople from the photons and 
disappear (Beginning of the leptonic era) . 
 
 
 



Some important events about T= 1 MeV (t = 1 s): 
 
Neutrino decoupling when weak interction rate equals the cosmic expansion rate 
 
 
 
 
 
Photon reheating at T = me  = 0.5 MeV (t = 10 s) produced by electron-positron 
annihilation: 
 
 
 
 
After that we are left just with many photons and a few protons, neutrons and 
electrons (remember baryonic asymmetry) 
 
Neutrons decople from protons (as neutrinos from electrons) and start to decay   
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1 Big Bang Nucleosynthesis: Overview

A few seconds after the Big Bang, almost all of the energy density in the Universe
was in photons, neutrinos, and e+e− pairs, but some was in the form of baryons.
We thus come to the subject of BBN: the production of the light elements in the
first few minutes after the Big Bang. We will discuss the subject in 3 phases:

• The determination of the neutron:proton ratio.

• Fusion and radioactive decay to produce D, 3He, 4He, 7Li.

• The observation and interpretation of light element abundances.

See also Dodelson §3.2 & 1.3.

2 The n : p
+ ratio

Neutrons and protons are interconverted by weak interactions:

n ↔ p+ + e− + ν̄e

n + νe ↔ p+ + e−

n + e+ ↔ p+ + ν̄e. (1)

Equilibrium physics. Let’s examine how these reactions play out before
e+e− annihilation (T ≥ 200 keV) and when the weak interactions are fast (turns
out to be T > 1 MeV). The electron chemical potential is negligible in this case,
and neutrino chemical potential is essentially zero (in standard model!), so we
should have

µn = µp. (2)

The chemical potential is related to abundance for a nonrelativistic species (re-
call T ≪ mp, mn):

µX = mX + T ln

[

nX

gX

(

2π

mXT

)3/2
]

, (3)

where gX is the degeneracy (2s + 1; 2 for n or p+). The equilibrium condition
then gives

nn

np
= e−(mn−mp)/T = e−Q/T . (4)

We’ve defined Q = mn − mp = 1.293 MeV. So at high temperatures (T ≫ Q)
and in thermal equilibrium there are the same number of neutrons as protons.
As T drops we have fewer neutrons, and eventually in thermal equilibrium they
all go away.

Non-equilibrium physics. But the real Univese is not in thermal equilib-
rium and we’d better explore the consequences. Let’s define a fraction Xn of
the baryons to be neutrons and Xp = 1 − Xn to be protons. Then we have

Ẋn = −λnpXn + λpn(1 − Xn), (5)
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2 Burles, Nollett, and Turner

0.05%6. Some of the abundances follow approximate power
laws, and so we have obtained accurate fits by fitting the means
and variances of their base-ten logarithms in all cases except
the mean YP. Because our estimates for the uncertainties are
small, Var(Yi) = (Ȳi/0.4343)2Var(log10Yi). The covariance ma-
trix is written in terms of the variances and a correlation matrix
ri j:

ρi j = ri j
√

Var(Yi)Var(Yj). (1)
where Yi is baryon fraction for 4He and number relative to Hy-
drogen for the other nuclides, and Ȳi is its mean over the output
yields.
Finally, because BBN produces 7Li by two distinct pro-

cesses, direct production and indirect production through 7Be
with subsequent electron capture to 7Li, we have split the 7Li
yield into these two pieces to obtain more accurate fits. The
mean prediction for 7Li is just the sum of the two contribu-
tions; the variance Var(Y7) = Var(YLi) +Var(YBe) + 2ρLi,Be. The
covariance between the total BBN 7Li and another nuclide
ρi,7 = ρi,Li +ρi,Be.

FIG. 1. Predicted big-bang abundances of the light elements shown as bands
of 95% confidence.

3. IMPLICATIONS

To use our predictions we need observed abundances of the
light elements. This is a lively area of research, with some con-
troversy. Here, based upon our evaluation of the data, we state
our choices with brief justification and point the reader inter-
ested in more detail to the relevant literature.
For the primordial deuterium abundance we use the weighted

average of the 3 detections in high-redshift Ly-α, (D/H)P =

(3.0±0.2)×10−5 (for further discussion see Burles et al. 2000;
Tytler et al. 2000; O’Meara et al. 2001).
For the present abundance of D+3He, we use measure-

ments of both elements made in the local interstellar medium
(ISM). The deuterium abundance, D/H= (1.5± 0.2± 0.5)×
10−5, comes from HST, IUE and Copernicus measurements
along 12 lines of sight to nearby stars (Linsky 1998; Lemoine
et al. 1999; McCullough 1992). The first error is statistical,
and the second error represents the possibility of scatter due
to spatial variations (Vidal-Madjar & Gry 1984; Linsky 1998;
Vidal-Madjar et al. 1999; Sonneborn et al. 2000); as it turns
out, the uncertainty in 3He dominates both. Gloeckler & Geiss
(1998) have determined the ratio of 3He to 4He in the local ISM
using the pick-up ion technique. Allowing for a local 4He mass
fraction between 25% and 30%, their measurement translates
to 3He/H= (2.2±0.8)×10−5 and (D+3He)/H= (3.7±1)×10−5.
For the primordial 7Li abundance we use the value advo-

cated by Ryan (2000), based upon the extant measurements of
7Li in the atmospheres of old halo stars. His value, 7Li/H=
1.2+0.35−0.2 × 10−10, includes empirical corrections for cosmic-ray
production, stellar depletion, and improved atmospheric mod-
els, and the uncertainty arises mainly from these corrections.
This is consistent with other estimates (see e.g., Bonifacio &
Molaro 1997; Ryan et al. 1999; Thorburn 1994).
The primordial abundance of 4He is best inferred fromHII re-

gions in metal-poor, dwarf emission-line galaxies. While such
measurements are some of the most precise in astrophysics, the
values for YP obtained from the two largest samples of such ob-
jects are not consistent and concerns remain about systematic
error.
Olive et al (1997) have compiled a large sample of ob-

jects and find YP = 0.234± 0.002. On the other hand, Izotov
& Thuan (1998) have assembled a large sample from a sin-
gle observational program, extracting YP from the spectra by
a different method. They find YP = 0.244± 0.002 (consistent
with the earlier sample of Kunth & Sargent 1983, which found
YP = 0.245±0.003). Further, they have shown that at least one
of the most metal-poor objects (IZw18) used in the earlier sam-
ple suffered from stellar absorption, and argue that it and possi-
bly other metal-poor objects in this sample explain the discrep-
ancy. Viegas et al. (2000) argue that the Izotov and Thuan sam-
ple should be corrected downward by a small amount (∆YP ≈
0.003) to account for neutral and doubly ionized 4He; Ballan-
tyne et al. (2000) agree on the magnitude of the effect, but not
the direction. Finally, a recent study of different parts of a sin-
gle HII region in the SMC finds Y = 0.241±0.002 (Peimbert et
al. 2000), at face value implying YP ≤ 0.241±0.002.
Clearly, the final word on YP is not in. For now, because

of the homogeneity and size of the Izotov and Thuan sample
and the possible corruption of the other sample by stellar ab-
sorption, with caution we adopt YP = 0.244± 0.002. (Had we
adopted an intermediate value, with a systematic error reflect-
ing the discrepancy between the two data sets, our conclusions
would be largely the same.)
Using these choices, we have constructed separate likelihood

functions for the baryon-to-photon ratio η from the abundances
of D, D+3He, 4He and 7Li, assuming Gaussian distributions for
the uncertainties; see Fig. 2. While the D, D+3He and 4He

6 Our fit coefficients are the ai from Eq. 44. We note that their fitting formula for the dependence of YP on neutron lifetime (δYP in Equation 43 of that paper) has a
misprint in the signs but not the magnitudes of the coefficients bi. The correct sequence of signs for the bi is ++−+−. They also provide a fit for the Nν dependence
of YP.

Nucleus g(AZ) = 2I + 1 B(AZ), MeV Decay mode
2H 3 2.22 stable
3H 2 8.48 β →3He (12.6 yr)
3He 2 7.72 stable
4He 1 28.30 stable
6Li 3 31.99 stable
7Li 4 39.25 stable
7Be 4 37.60 electron capture to 7Li (53 days)
12C 1 92.16 stable

and baryon number A = Z + N is in equilibrium, it should have chemical po-
tential:

µ(AZ) = Zµp + NµN . (18)

We define the binding energy of the nucleus to be the difference between the
mass of its protons and neutrons, and the nucleus itself:

B(AZ) = Zmp + Nmn − m(AZ). (19)

The abundance by mass X(AZ) = An(AZ)/nb in equilibrium is then:

X(AZ) =
g(AZ)

2A
A5/2

(

2π

mnucT

)(3/2)(A−1)

nA−1
b XZ

p XN
n eB(AZ)/T . (20)

(The 2A is from proton and neutron spin states.) The proton and neutron abun-
dances Xp,n are determined by fixing the total number of protons and neutrons.
If this equation holds, we say that we have nuclear statistical equilibrium or
NSE.

Note that formation of heavy nuclei is favored at low temperatures (expo-
nential factor) and high density (nA−1

b factor).
Because we have the baryon density as a function of temperature, for a

given n/p ratio we can immediately work out the equilibrium abundances as a
function of time. Simplify to:

X(AZ) =
g(AZ)

2A
A5/2(9.3 × 10−14Ωbh

2T 3/2
9 )A−1XZ

p XN
n eB(AZ)/T . (21)

The exponential has to be very large in order to overcome the tiny factor 9.3×
10−14Ωbh2 and for this reason nuclei don’t form until the temperature falls well
below 1 MeV.

In NSE, half of the neutrons are absorbed into 4He at T9 = 3.3, or t = 16 s.
(Deuterium is never favored by NSE, e.g. at 16 s we have XD,NSE = 6×10−12.)
Half of the helium is burned to 12C at T9 = 1.12, or t =140 s. But NSE doesn’t
apply at low temperatures because the reaction rates are too slow.

Deuterium and 4He production. At the low densities of BBN the 4-body
reaction:

p+ + p+ + n + n →4 He (22)

4

Primordial Nucleosinthesis 
 
From T = 1 MeV  to T = 0.1 MeV  (t=1 s to 100 s) 
(Weinberg’s famous three minutes) 

210 QGP in the early Universe

weak interaction. Their relative abundance is dictated by the neu
difference, Q. : mn - ffip : 1.3 MeV:

_ ^-Q/r

where the chemical potentials of the electrons and the neutrinos arc
be negligible. At Z:Tn=0.8MeV, the weak interaction rate, such
v.*n, becomes smaller than the Hubble expansion rate. Then the
proton ratio is fixed and the neutron freeze-out takes place. After this
neutrons decay (n -+ p + e- * ü") slowly with a lifetime of about
Z reaches T¡- 0.07 MeV, the formation of d (deuteron), 3H, 3He,
7Be takes place according to the following reaction chains (Fig. S.9)

p*n -+ d+y,
d+p -+ 3He+7, d+d -+ 3H+p, d+d -+ 3He+n,

3H+d -+ 4He+n, 3H+ aH" -- 7Li¡y,
3He+n--3Hap, 3He+d-- aHe+p, 3He+aHe-r 7Be

7Li + p -- 4He + 4He, 7Be + n -* 7Li + p.

Since most of the neutrons are eventually used to form aHe, it is
to estimate the primordial abundance of this element at the time of
freeze-out (nnf nr)r:r,- | 16. Until nucleosynthesis begins, this ratio i
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(Alpher, Bethe and Gamow) 





Further important events 
 
After T = 1 eV   (1000 y) matter starts to dominate radiation. 
End of the radiation era. 
Begining of structure formation and BAO (t=7 104 y) 
Recombination at T = 0.3 eV  (t= 380.000 y) 
The Universe becomes neutral also locally.   
And finally photon decoupling  
Origin of the current Cosmic Microwave Background CMB 
Perfect black body radiation at T = 3000 K   (T= 2.7 K today)  
Temperature fluctuations are of the order of 10-5  or lesser  
(bound on previous departure from homogeneity)    
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The QCD phase transition could produce big inhomogenities because of the 
 fluctuations 
(in addition to those produced by inflation or other previous phase transitions)  
 
Those inhomogeneties must be washed up at the level of the CMB radiation 
or lower 
 
Dissipative processes during the hadron era could do the job 
 
Estudying how this works is the main point of this work 
 
 

Exercises

(8.88)

f other hand, the first equality in Eq. (g.65) yields a(t)/ar:T"lT(t), as

n'n in Fig. 8.11 is the time-dependence of the temperature of the universe
¡e first order QCD phase transition discussed in this section. Extension
ore realistic case with smooth crossover between the hadronic phase and
rk-gluon plasma can be easily achieved by taking the parametrized EoS
nd in Section 3.7. As long as the energy density and the entropy density
rcrease rapidly around the (pseudo) critical point, the qualitative behavior
is unchanged from that given in Fig. 8.11. (See Exercise g.6.)

Exercises

Three-dimensional curvature. Derive the relation between the three-
dimensional scalar curvature, 3R, and the scale parameter, a, given in
Eq. (8.6). Remember that the four-dimensional scalar curvature, R, in
Eq. (D.26) reduces to -3R if we neglect the r-dependence of a(r). For
more details, see Sec. lll in Landau and Lifshitz (1999).
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¡" 8.1 l. Temperature, I, of the Universe as a function of the age, /, around the
uch^of the_QCD phase transition. Typical scales used are z. - l70Mev and
= 78 p,s. compare this figure with that in the relativistic heavy ion collisions,
¡, 13.7.

nay be rewritten as dY/dt: r\-l by introducing a change of variable,-]{r,,/D', which gives

(?)': t*rE+

An important remark:  



Matter dominated era  
 
From T =  379.000 y to about 300 million years no brilliant single objects in the 
universe, just clouds of H and He (the Dark Eges) 
 
At something about several hundred million years stars gallaxy and star 
formation 
 
9 x 109 y Sun formation 
 
1010 y Earliest forms of life 
 
1010 y Dark energy dominated era 
 
 
 
 
 
 
 
 

5%   Ordinary Matter 
25% Dark Matter 
70% Dark Energy 



This is the 1st Hadron Spanish Network Days meeting! 
  
The Hadron era in more detail: 
 
From T = 175 MeV, t = 10-6  s, RH = 10 km, MH ~  M¤ 
(just after the QCD phase transition) 
 
 
 
Flat FRW metric 
 
Einstein Field Equations                                                  One hundred years old! 
 
 
Friedmann equation:                           and the matter equation:  
 
 
Total density: 
 
Strong, electromagnetic and weak interactions rates are much faster than the 
cosmic expansion rates: 
 
                     
  
 
 
 
 
 
 
 
 
 
 
 

2 Model

We take into consideration natural units, i.e., k = c = 1 and h = 2π and assume
that background geometry of early Universe is filled with bulk viscous cosmic
fluid, which can be described by a spatially flat FRW metric. The line element
is

ds2 = dt2 − a2(t)
[

dr2 + r2
(

dθ2 + sin2 θdφ2
)]

. (1)

At vanishing cosmological constant Λ, Einstein gravitational field equations in
a static and flat Universe (k = 0) read

Rik −
1

2
gikR = 8π G Tik. (2)

Inclusion of bulk viscous effects can be generalized through an effective pressure
Π, which is formally included in the effective thermodynamic pressure peff [7].
Then in the co-moving frame the energy momentum tensor has the components
T 0

0 = ρ, T 1
1 = T 2

2 = T 3
3 = −peff . For the line element a given by Eq. (1), we get

two independent solutions

(

ȧ

a

)2

=
8π

3
G ρ, (3)

ä

a
= −

4π

3
G (3peff + ρ) , (4)

where one dot denotes differentiation with respect to the comoving time t and ρ
is the energy density. Assuming that the Universe is a closed system, the total
energy density of cosmic matter is conserved, i.e., T j

i;j = 0.

ρ̇ + 3H (peff + ρ) = 0, (5)

Here we introduced the Hubble parameter H = ȧ/a. In the presence of bulk
viscous stress Π, the effective pressure becomes peff = p + Π, where p is the
thermodynamic pressure of the cosmic fluid. Then Eq. (5) can be written as

ρ̇ + 3H (p + ρ) = −3ΠH. (6)

According to the causal theory of relativistic fluid; Israel-Stewart theory [3, 4],
the evolution equation of the bulk viscous pressure reads [7]

τΠ̇ + Π = −3ξH −
1

2
τΠ

(

3H +
τ̇

τ
−

ξ̇

ξ
−

Ṫ

T

)

, (7)

where T is the temperature, ξ denotes the bulk viscosity coefficient and τ stands
for the relaxation time.

Equations of state for p and T can help to have a closed system from Eq. (3),
(6) and (7). τ and ξ are determined according to phenomenological approaches.
For instance, bulk viscosity of QGP at high temperature can be determined
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ä

a
= −

4π

3
G (3peff + ρ) , (4)

where one dot denotes differentiation with respect to the comoving time t and ρ
is the energy density. Assuming that the Universe is a closed system, the total
energy density of cosmic matter is conserved, i.e., T j

i;j = 0.

ρ̇ + 3H (peff + ρ) = 0, (5)

Here we introduced the Hubble parameter H = ȧ/a. In the presence of bulk
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II. ENTROPY IN THE HOMOGENEOUS
FRIEDMANN-ROBERTSON-WALKER

COSMOLOGY

A. System of equations for universe evolution

In this section we quickly review the standard statisti-
cal physics in the spatially flat ( = 0) [? ] homogeneous
cosmos that serves as background for later study of inho-
mogeneities. In this case the two independent Einstein
equations give rise to the the Friedmann equation:
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⇢ . (1)

for the evolution of the expansion parameter a(t) from
the Friedmann equation and the balance equation

d⇢

dt
= �3ȧ

a
(⇢+ P ) , (2)

where P is the total pressure and the energy density ⇢
is the sum of the partial energy densities for the various
species

⇢ = ⇢� + ⇢⌫,⌫̄ + ⇢e± + ⇢µ,µ̄ + ⇢⇡±,⇡0 + ⇢N,N̄ + . . . (3)

In table ?? we summarize all possible interactions in the
temperature range we are discussing, 1 < T < 175 MeV.
In particular, nucleons are already non-relativistic and
unimportant, as is dark matter. Pions and muons be-
have as radiation in the upper end of the temperature
range. This can be seen for each species contribution,

Table I: Main processes at the temperature interval 175MeV�
1MeV. ⇡ denotes the ⇡+

⇡

� or ⇡0 mesons, µ the muon and its
antiparticle and e, the e

+ and e

�. There is another reaction:
⇡

0 ! ��

⇤ ! e

+
e

�
�, however, note that the Dalitz decays

have a branching fraction of o(1%) [? ].

⇡

0 $ �� NN $ �� e⇡ $ e⇡

⇡⇡ $ ⇡⇡ NN $ NN e e $ e e

⇡

+ $ µ

+
⌫µ µ

+ $ e

+
⌫e⌫µ e� $ e�

⇡⇡ $ �� µ⇡ $ µ⇡ e⇡ $ e⇡

⌫e⌫e $ e

+
e

�
µ

�
� $ µ

�
� µµ $ µµ

⌫µ⌫µ $ µ

+
µ

�
�� $ µ

�
µ

+
µe $ µe

N N $ N N �� $ e

�
e

+

with degeneracy gi

⇢i =
gi

(2⇡)3

Z
d3pEi fi(r,p, t) , (4)

because in thermal equilibrium, the function fi (usual
Fermi-Dirac or Bose-Einstein distribution)

fi(r,p, t) =
1

e(p↵U↵(r,t)�µi(r,t))/T (r,t) ± 1
, (5)

suppresses the contribution by e�mi/T . Here we have
considered the more general case of local instantaneous

thermodynamic equilibrium which will be useful later.
As usual, p↵ and U↵ are the components of the particle
four-momentum p↵ = (Ei,p) and the fluid four-velocity
U↵ = �V(1,V) respectively, with �V = (1�V2)�1/2. In
a comoving frame, U↵ = (1, 0, 0, 0) and thus p↵U↵ = Ei.
The chemical potentials µi can be determined from the
current abundances and the scale factor a(t)/a(0). As
they are tiny we do not consider them here.
Summing Eq. (??) over species yields ⇢(T ) from which

the temperature evolution can be extracted as

dT

dt
= �3ȧ

a
(⇢+ P )

dT

d⇢
. (6)

Eq. (??) and (??) can be easily solved numerically by
using for example the Runge-Kutta algorithm. The en-
ergy density is computed from the numerical integration
of Eq. (??) at each temperature, and the pressure is
similarly obtained from the spatial trace of the energy-
momentum tensor �ijT ij = 3P ,

P =
1

3

Z
d3p f(r,p, t)

|p|2

E
.

Density and pressure decrease monotonically with t,
while the scale factor a(t) increases monotonically; any
of them may be used as a clock for further computations.
With the solutions at hand we can backtrack from the
time of nucleosynthesis (a well-studied period) to the
pion gas at temperatures two orders of magnitude
higher, since the entire particle content in this epoch
is well known. We do not resort to usual textbook
power-law approximations since simple computer codes
produce the exact solutions for this one-dimensional
evolution-equation set. In order to make accurate
computations, it is necessary to set a suitable unit
system. We take (100MeV) for temperature, energy
and chemical potential (kB = 1) and peV�1 for time
and space (c = 1). With this, the Cavendish constant
G turns out to be 1/1.44 (100MeV)2. Time has di-
mensions of inverse energy so 1 s ! 1 s

6.58⇥10�16eV·s =

1.52 ⇥ 1015 eV�1 = 1.52 ⇥ 103 peV�1, likewise, 10�6 s
can be recast as 1.52⇥ 10�3 peV�1.

The resulting scale factor is shown in figure ??.

B. Computation of the entropy

For the calculation of the entropy in the homogeneous
case we first note that the thermodynamic magnitudes
are a function of the temperature only. We will also as-
sume thermal equilibrium, vanishing chemical potentials
and adiabatic expansion. Then the conservation of the
entropy per co-moving volume implies sa3 = s0a

3
0 where

s = s(T ) is the entropy density (see for example [? ]).
Now the fundamental thermodynamic relation reads:

The second principle of thermodynamics gives the total-
entropy increase as

TdS = d(⇢V ) + PdV. (7)
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The chemical potentials µi can be determined from the
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they are tiny we do not consider them here.
Summing Eq. (??) over species yields ⇢(T ) from which

the temperature evolution can be extracted as

dT

dt
= �3ȧ
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Eq. (??) and (??) can be easily solved numerically by
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ergy density is computed from the numerical integration
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similarly obtained from the spatial trace of the energy-
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while the scale factor a(t) increases monotonically; any
of them may be used as a clock for further computations.
With the solutions at hand we can backtrack from the
time of nucleosynthesis (a well-studied period) to the
pion gas at temperatures two orders of magnitude
higher, since the entire particle content in this epoch
is well known. We do not resort to usual textbook
power-law approximations since simple computer codes
produce the exact solutions for this one-dimensional
evolution-equation set. In order to make accurate
computations, it is necessary to set a suitable unit
system. We take (100MeV) for temperature, energy
and chemical potential (kB = 1) and peV�1 for time
and space (c = 1). With this, the Cavendish constant
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and adiabatic expansion. Then the conservation of the
entropy per co-moving volume implies sa3 = s0a
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considered the more general case of local instantaneous

thermodynamic equilibrium which will be useful later.
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U↵ = �V(1,V) respectively, with �V = (1�V2)�1/2. In
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they are tiny we do not consider them here.
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a
(⇢+ P )

dT

d⇢
. (6)

Eq. (??) and (??) can be easily solved numerically by
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ergy density is computed from the numerical integration
of Eq. (??) at each temperature, and the pressure is
similarly obtained from the spatial trace of the energy-
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Density and pressure decrease monotonically with t,
while the scale factor a(t) increases monotonically; any
of them may be used as a clock for further computations.
With the solutions at hand we can backtrack from the
time of nucleosynthesis (a well-studied period) to the
pion gas at temperatures two orders of magnitude
higher, since the entire particle content in this epoch
is well known. We do not resort to usual textbook
power-law approximations since simple computer codes
produce the exact solutions for this one-dimensional
evolution-equation set. In order to make accurate
computations, it is necessary to set a suitable unit
system. We take (100MeV) for temperature, energy
and chemical potential (kB = 1) and peV�1 for time
and space (c = 1). With this, the Cavendish constant
G turns out to be 1/1.44 (100MeV)2. Time has di-
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B. Computation of the entropy

For the calculation of the entropy in the homogeneous
case we first note that the thermodynamic magnitudes
are a function of the temperature only. We will also as-
sume thermal equilibrium, vanishing chemical potentials
and adiabatic expansion. Then the conservation of the
entropy per co-moving volume implies sa3 = s0a

3
0 where

s = s(T ) is the entropy density (see for example [? ]).
Now the fundamental thermodynamic relation reads:

The second principle of thermodynamics gives the total-
entropy increase as

TdS = d(⇢V ) + PdV. (7)
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at temperature T + �T towards the surrounding en-
vironment value of T , ignoring other quantities that
may separate from equilibrium such as momentum
distributions or chemical inhomogeneities. Then we will
calculate the subsequent entropy production to have
reference values that may be useful in future studies.

II. ENTROPY IN THE HOMOGENEOUS
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COSMOLOGY

A. System of equations for universe evolution

In this section we quickly review the standard statisti-
cal physics in the spatially flat ( = 0) [9] homogeneous
cosmos that serves as background for later study of inho-
mogeneities. In this case the two independent Einstein
equations give rise to the the Friedmann equation:
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where P is the total pressure and the energy density ⇢
is the sum of the partial energy densities for the various
species

⇢ = ⇢� + ⇢⌫,⌫̄ + ⇢e± + ⇢µ,µ̄ + ⇢⇡±,⇡0 + ⇢N,N̄ + . . . (3)

In table I we summarize all possible interactions in the
temperature range we are discussing, 1 < T < 175 MeV.
In particular, nucleons are already non-relativistic and
unimportant, as is dark matter. Pions and muons be-
have as radiation in the upper end of the temperature
range. This can be seen for each species contribution,

Table I: Main processes in the temperature interval 175MeV�
1MeV. If the charge is not specified, the reaction can be
written for all combinations, e.g. ⇡ denotes either of ⇡+⇡�

or ⇡0, or µ both muon and antimuon. (There are additional
reactions with much smaller branching fractions, such as the
Dalitz decay ⇡0 ! ��⇤ ! e+e�� at O(1%) [10].)

⇡0 $ �� NN $ NN e⇡ $ e⇡
⇡⇡ $ ⇡⇡ NN̄ $ �� e e $ e e

⇡+ $ µ+⌫µ µ+ $ e+⌫e⌫µ e� $ e�
⇡⇡ $ �� µ⇡ $ µ⇡ �� $ e�e+

⌫e⌫e $ e+e� µ�� $ µ�� µµ $ µµ
⌫µ⌫µ $ µ+µ� �� $ µ�µ+ µe $ µe
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(2⇡)3

Z
d3pEi fi(r,p, t) , (4)

because in thermal equilibrium, the function fi (usual
Fermi-Dirac or Bose-Einstein distribution)

fi(r,p, t) =
1

e(p↵U↵(r,t)�µi(r,t))/T (r,t) ± 1
, (5)

suppresses the contribution by e�mi/T . Here we have
considered the more general case of local instantaneous
thermodynamic equilibrium which will be useful later.
As usual, p↵ and U↵ are the components of the particle
four-momentum p↵ = (Ei,p) and the fluid four-velocity
U↵ = �V(1,V) respectively, with �V = (1�V2)�1/2. In
a comoving frame, U↵ = (1, 0, 0, 0) and thus p↵U↵ = Ei.

We have determined the chemical potentials µi from
the current abundances and the scale factor a(t)/a(0).
As they are tiny we do not quote them here.
Summing Eq. (4) over species yields ⇢(T ) from which

the temperature evolution can be extracted as

dT
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= �3ȧ
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(⇢+ P )

dT
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. (6)

Eq. (1) and (6) can be easily solved numerically by us-
ing for example the Runge-Kutta algorithm. The energy
density is computed from the numerical integration of
Eq. (4) at each temperature, and the pressure is similarly
obtained from the spatial trace of the energy-momentum
tensor �ijT ij = 3P ,

P =
1

3

Z
d3p f(r,p, t)

|p|2

E
.

Density and pressure decrease monotonically with t,
while the scale factor a(t) increases monotonically; any
of them may be used as a clock for further computa-
tions. With the solutions at hand we can backtrack from
the time of nucleosynthesis (a well-studied period) to
the pion gas at temperatures two orders of magnitude
higher, since the entire particle content in this epoch is
well known. We do not resort to usual textbook power-
law approximations since simple computer codes produce
the (numerically) exact solutions for this one-dimensional
evolution-equation set. In order to make accurate com-
putations, it is necessary to set a suitable unit system.
We often take (100MeV) for temperature, energy and
chemical potential (kB = 1) and peV�1 for time and
space (c = 1). With this, the Cavendish constant G
turns out to be 1/1.44 (100MeV)2. Dimensionally, time
is an inverse energy, so that 1 s ! 1.52⇥ 103 peV�1.
The resulting scale factor is shown in figure 1.

B. Computation of the entropy

For the calculation of the entropy in the homogeneous
case we first note that the thermodynamic magnitudes
are a function of the temperature only. We will also as-
sume thermal equilibrium, vanishing chemical potentials
and adiabatic expansion. Then the conservation of the
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the largest inhomogeneities, if any are present, because
they are the ones opposing di↵usion most.

With this motivation, our concrete study will be
to address the relaxation of a thermal inhomogeneity
at temperature T + �T towards the surrounding en-
vironment value of T , ignoring other quantities that
may separate from equilibrium such as momentum
distributions or chemical inhomogeneities. Then we will
calculate the subsequent entropy production to have
reference values that may be useful in future studies.
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mogeneities. In this case the two independent Einstein
equations give rise to the the Friedmann equation:
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where P is the total pressure and the energy density ⇢
is the sum of the partial energy densities for the various
species

⇢ = ⇢� + ⇢⌫,⌫̄ + ⇢e± + ⇢µ,µ̄ + ⇢⇡±,⇡0 + ⇢N,N̄ + . . . (3)

In table I we summarize all possible interactions in the
temperature range we are discussing, 1MeV < T < 175
MeV. In particular, for entropy considerations, nucleons
(already non-relativistic) and dark matter are not impor-
tant. Pions and muons behave as radiation in the upper
end of the temperature range.

This can be seen for each species contribution, with
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Fermi-Dirac or Bose-Einstein distribution)

fi(r,p, t) =
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e(p↵U↵(r,t)�µi(r,t))/T (r,t) ± 1
, (5)

suppresses the contribution by e�mi/T . Here we have
considered the more general case of local instantaneous

thermodynamic equilibrium which will be useful later.
As usual, p↵ and U↵ are the components of the particle
four-momentum p↵ = (E,p) and the fluid four-velocity
U↵ = �V(1,V) respectively, with �V = (1�V2)�1/2. In
a comoving frame, U↵ = (1, 0, 0, 0) and thus p↵U↵ = E.
We have determined the chemical potentials µi from the
current abundances and the scale factor a(t)/a(0). As
they are tiny we do not quote them here.
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1MeV. If the charge is not specified, the reaction can be
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or ⇡0, and µ both muon and antimuon. (There are additional
reactions with much smaller branching fractions, such as the
Dalitz decay ⇡0 ! ��⇤ ! e+e�� at O(1%) [11].)

Summing Eq. (4) over species yields ⇢(T ) from which
the temperature evolution can be extracted as
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Eq. (1) and (6) can be solved numerically by using for
example the Runge-Kutta algorithm. The energy density
is computed from the numerical integration of Eq. (4) at
each temperature, and the pressure is similarly obtained
from the spatial trace of the energy-momentum tensor
�ijT
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Density and pressure decrease monotonically with t,
while the scale factor a(t) increases monotonically; any
of them may be used as a clock for further computations.
We will set as origin of time the exit from the QGP.
With the solutions at hand we can backtrack from the

time of nucleosynthesis (a well-studied period [12]) to
the pion gas at temperatures two orders of magnitude
higher, since the entire particle content in this epoch
is well known. We do not resort to usual textbook
power-law approximations since simple computer codes
produce the (numerically) exact solutions for this one-
dimensional evolution-equation set. For computer accu-
racy, it is necessary to set a unit system that minimizes
the number of large powers. We often take (100MeV)
for temperature, energy and chemical potential (kB = 1)
and peV�1 for time and space (c = 1). With this, the
Cavendish constant G turns out to be 1/1.44 (100MeV)2.
Dimensionally, time is an inverse energy, so that 1 s !
1.52⇥ 103 peV�1.
The resulting scale factor is shown in figure 1.
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the largest inhomogeneities, if any are present, because
they are the ones opposing di↵usion most.

With this motivation, our concrete study will be
to address the relaxation of a thermal inhomogeneity
at temperature T + �T towards the surrounding en-
vironment value of T , ignoring other quantities that
may separate from equilibrium such as momentum
distributions or chemical inhomogeneities. Then we will
calculate the subsequent entropy production to have
reference values that may be useful in future studies.

II. ENTROPY IN THE HOMOGENEOUS
FRIEDMANN-ROBERTSON-WALKER

COSMOLOGY

A. System of equations for universe evolution

In this section we quickly review the standard statisti-
cal physics in the spatially flat ( = 0) [10] homogeneous
cosmos that serves as background for later study of inho-
mogeneities. In this case the two independent Einstein
equations give rise to the the Friedmann equation:
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In table I we summarize all possible interactions in the
temperature range we are discussing, 1MeV < T < 175
MeV. In particular, for entropy considerations, nucleons
(already non-relativistic) and dark matter are not impor-
tant. Pions and muons behave as radiation in the upper
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suppresses the contribution by e�mi/T . Here we have
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thermodynamic equilibrium which will be useful later.
As usual, p↵ and U↵ are the components of the particle
four-momentum p↵ = (E,p) and the fluid four-velocity
U↵ = �V(1,V) respectively, with �V = (1�V2)�1/2. In
a comoving frame, U↵ = (1, 0, 0, 0) and thus p↵U↵ = E.
We have determined the chemical potentials µi from the
current abundances and the scale factor a(t)/a(0). As
they are tiny we do not quote them here.

⇡0 $ �� NN $ NN e⇡ $ e⇡
⇡⇡ $ ⇡⇡ NN̄ $ �� e e $ e e

⇡+ $ µ+⌫µ µ+ $ e+⌫e⌫µ e� $ e�
⇡⇡ $ �� µ⇡ $ µ⇡ �� $ e�e+

⌫e⌫e $ e+e� µ�� $ µ�� µµ $ µµ
⌫µ⌫µ $ µ+µ� �� $ µ�µ+ µe $ µe

Table I: Main processes in the temperature interval 175MeV�
1MeV. If the charge is not specified, the reaction can be
written for all combinations, e.g. ⇡ denotes either of ⇡+, ⇡�

or ⇡0, and µ both muon and antimuon. (There are additional
reactions with much smaller branching fractions, such as the
Dalitz decay ⇡0 ! ��⇤ ! e+e�� at O(1%) [11].)

Summing Eq. (4) over species yields ⇢(T ) from which
the temperature evolution can be extracted as

dT

dt
= �3ȧ
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Eq. (1) and (6) can be solved numerically by using for
example the Runge-Kutta algorithm. The energy density
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Density and pressure decrease monotonically with t,
while the scale factor a(t) increases monotonically; any
of them may be used as a clock for further computations.
We will set as origin of time the exit from the QGP.
With the solutions at hand we can backtrack from the

time of nucleosynthesis (a well-studied period [12]) to
the pion gas at temperatures two orders of magnitude
higher, since the entire particle content in this epoch
is well known. We do not resort to usual textbook
power-law approximations since simple computer codes
produce the (numerically) exact solutions for this one-
dimensional evolution-equation set. For computer accu-
racy, it is necessary to set a unit system that minimizes
the number of large powers. We often take (100MeV)
for temperature, energy and chemical potential (kB = 1)
and peV�1 for time and space (c = 1). With this, the
Cavendish constant G turns out to be 1/1.44 (100MeV)2.
Dimensionally, time is an inverse energy, so that 1 s !
1.52⇥ 103 peV�1.
The resulting scale factor is shown in figure 1.
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Figure 1: Computed scale factor as a function of time (solid,
blue online) multiplied by a 1011 factor. The normalization
condition is a(today) = 1, though we take from other work
a(t

nucleosynthesis

) which is where we really end our computa-
tions.We also show the analytic form a(t) /

p
t (dashed line,

red online) that fits the lepton era at smaller temperatures.
As we focuse here on the pion gas, found at earlier times,
roughly from tT=175

= 0 s to tT=100

⇡ 10�2 peV�1 (10�5 s),
that square-root approximation separates significantly from
the actual numerical computation that we employ.

B. Computation of the entropy

For the calculation of the entropy in the homogeneous
case we first note that the thermodynamic magnitudes
are a function of the temperature only. We will also as-
sume thermal equilibrium, vanishing chemical potentials
and adiabatic expansion. Then the conservation of the
entropy per co-moving volume implies sa3 = s0a

3
0 where

s = s(T ) is the entropy density (see for example [13]).
The second principle of thermodynamics gives the

total-entropy increase as

TdS = d(⇢V ) + PdV. (7)

where S = sV is the total entropy and V is the volume.
From this equation it is possible to get the thermody-
namic relations:

s =
1

T
(⇢+ P ) =

dP

dT
. (8)

Therefore the entropy in co-moving volume V is con-
stant and proportional to a3(t)⇢+P

T . Enumerating all the
species (in equilibrium at the same universal T )

s =
⇢1 + · · ·+ ⇢n + P1 + · · ·+ Pn

T
. (9)

The pion gas can be near chemical equilibrium because
the pion production rate (through �� $ ⇡⇡ followed by
⇡+⇡� $ ⇡0⇡0, and similar lepton-lepton inelastic inter-
actions) is su�cient to o↵set the pion decay rate. Sugiero
dar algún número orientativo. In figure 2 we show the
time-evolution of the number density for the more rele-
vant temperature span between 175 and 70 MeV. During

Figure 2: Number density of the most abundant species
at this epoch. Top line (black online): photon number den-
sity. Red online: pion number density. Blue online: electron
number density. Green, dashed line: muon number density.
Bottom line (black, dotted online): neutrino number density.
The number density of nucleons is completely negligible dur-
ing all this time interval.

this time interval, pions (and also muons) are abundant,
comparably to the (quasi)massless species.
The entropy density may also be written as/ gs(T )T 3,

gs(T ) being the number of e↵ective degrees of freedom.
In particular, for ultrarelativistic particles,

s(T ) = gs
2⇡2

45
T 3 . (10)

Due to their relativistic behavior throughout our en-
tire temperature range, the e↵ective number of degrees
of freedom for photons, electrons and neutrinos is con-
stant. The massive species see drops when T < mi as
they become non-relativistic. Our numerical computa-
tion of the entropy can be casted in terms of gs(T ) and
it is plotted in figure 3. In particular, the contribution
of nucleons (as well as all strange and higher-flavor par-
ticles, not mentioned further) to the entropy density is
completely negligible.

III. ENTROPY PRODUCTION BY LOCAL
DEPARTURES FROM (THERMAL)

HOMOGENEITY

A. Solution to the heat equation

In this section, we consider separations from the homo-
geneous background described in section II. For simplic-
ity we will take inhomogeneities to be spherical bulbs
at temperature di↵erent from the background. Thus,
the temperature field T (r, t) will now also acquire a de-
pendence on position. Local thermal equilibrium as well
as chemical equilibrium is still assumed (and departures
thereof can be separately considered in further investiga-
tions that we do not attempt here).
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produce the (numerically) exact solutions for this one-
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racy, it is necessary to set a unit system that minimizes
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and peV�1 for time and space (c = 1). With this, the
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Dimensionally, time is an inverse energy, so that 1 s !
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Figure 1: Computed scale factor as a function of time (solid,
blue online) multiplied by a 1011 factor. The normalization
condition is a(today) = 1, though we take from other work
a(t

nucleosynthesis

) which is where we really end our computa-
tions.We also show the analytic form a(t) /

p
t (dashed line,

red online) that fits the lepton era at smaller temperatures.
As we focuse here on the pion gas, found at earlier times,
roughly from tT=175

= 0 s to tT=100

⇡ 10�2 peV�1 (10�5 s),
that square-root approximation separates significantly from
the actual numerical computation that we employ.

B. Computation of the entropy

For the calculation of the entropy in the homogeneous
case we first note that the thermodynamic magnitudes
are a function of the temperature only. We will also as-
sume thermal equilibrium, vanishing chemical potentials
and adiabatic expansion. Then the conservation of the
entropy per co-moving volume implies sa3 = s0a

3
0 where

s = s(T ) is the entropy density (see for example [13]).
The second principle of thermodynamics gives the

total-entropy increase as

TdS = d(⇢V ) + PdV. (7)

where S = sV is the total entropy and V is the volume.
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Therefore the entropy in co-moving volume V is con-
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⇢1 + · · ·+ ⇢n + P1 + · · ·+ Pn

T
. (9)

The pion gas can be near chemical equilibrium because
the pion production rate (through �� $ ⇡⇡ followed by
⇡+⇡� $ ⇡0⇡0, and similar lepton-lepton inelastic inter-
actions) is su�cient to o↵set the pion decay rate. Sugiero
dar algún número orientativo. In figure 2 we show the
time-evolution of the number density for the more rele-
vant temperature span between 175 and 70 MeV. During
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Figure 2: Number density of the most abundant species
at this epoch. Top line (black online): photon number den-
sity. Red online: pion number density. Blue online: electron
number density. Green, dashed line: muon number density.
Bottom line (black, dotted online): neutrino number density.
The number density of nucleons is completely negligible dur-
ing all this time interval.

this time interval, pions (and also muons) are abundant,
comparably to the (quasi)massless species.
The entropy density may also be written as/ gs(T )T 3,

gs(T ) being the number of e↵ective degrees of freedom.
In particular, for ultrarelativistic particles,

s(T ) = gs
2⇡2

45
T 3 . (10)

Due to their relativistic behavior throughout our en-
tire temperature range, the e↵ective number of degrees
of freedom for photons, electrons and neutrinos is con-
stant. The massive species see drops when T < mi as
they become non-relativistic. Our numerical computa-
tion of the entropy can be casted in terms of gs(T ) and
it is plotted in figure 3. In particular, the contribution
of nucleons (as well as all strange and higher-flavor par-
ticles, not mentioned further) to the entropy density is
completely negligible.

III. ENTROPY PRODUCTION BY LOCAL
DEPARTURES FROM (THERMAL)

HOMOGENEITY

A. Solution to the heat equation

In this section, we consider separations from the homo-
geneous background described in section II. For simplic-
ity we will take inhomogeneities to be spherical bulbs
at temperature di↵erent from the background. Thus,
the temperature field T (r, t) will now also acquire a de-
pendence on position. Local thermal equilibrium as well
as chemical equilibrium is still assumed (and departures
thereof can be separately considered in further investiga-
tions that we do not attempt here).
The departure from the background modifies temper-
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the largest inhomogeneities, if any are present, because
they are the ones opposing di↵usion most.

With this motivation, our concrete study will be
to address the relaxation of a thermal inhomogeneity
at temperature T + �T towards the surrounding en-
vironment value of T , ignoring other quantities that
may separate from equilibrium such as momentum
distributions or chemical inhomogeneities. Then we will
calculate the subsequent entropy production to have
reference values that may be useful in future studies.

II. ENTROPY IN THE HOMOGENEOUS
FRIEDMANN-ROBERTSON-WALKER

COSMOLOGY

A. System of equations for universe evolution

In this section we quickly review the standard statisti-
cal physics in the spatially flat ( = 0) [10] homogeneous
cosmos that serves as background for later study of inho-
mogeneities. In this case the two independent Einstein
equations give rise to the the Friedmann equation:
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for the evolution of the expansion parameter a(t) from
the Friedmann equation and the balance equation
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where P is the total pressure and the energy density ⇢
is the sum of the partial energy densities for the various
species

⇢ = ⇢� + ⇢⌫,⌫̄ + ⇢e± + ⇢µ,µ̄ + ⇢⇡±,⇡0 + ⇢N,N̄ + . . . (3)

In table I we summarize all possible interactions in the
temperature range we are discussing, 1MeV < T < 175
MeV. In particular, for entropy considerations, nucleons
(already non-relativistic) and dark matter are not impor-
tant. Pions and muons behave as radiation in the upper
end of the temperature range.

This can be seen for each species contribution, with
degeneracy gi

⇢i =
gi

(2⇡)3

Z
d3pEi fi(r,p, t) , (4)

because in thermal equilibrium, the function fi (usual
Fermi-Dirac or Bose-Einstein distribution)

fi(r,p, t) =
1

e(p↵U↵(r,t)�µi(r,t))/T (r,t) ± 1
, (5)

suppresses the contribution by e�mi/T . Here we have
considered the more general case of local instantaneous

thermodynamic equilibrium which will be useful later.
As usual, p↵ and U↵ are the components of the particle
four-momentum p↵ = (E,p) and the fluid four-velocity
U↵ = �V(1,V) respectively, with �V = (1�V2)�1/2. In
a comoving frame, U↵ = (1, 0, 0, 0) and thus p↵U↵ = E.
We have determined the chemical potentials µi from the
current abundances and the scale factor a(t)/a(0). As
they are tiny we do not quote them here.

⇡0 $ �� NN $ NN e⇡ $ e⇡
⇡⇡ $ ⇡⇡ NN̄ $ �� e e $ e e
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⌫e⌫e $ e+e� µ�� $ µ�� µµ $ µµ
⌫µ⌫µ $ µ+µ� �� $ µ�µ+ µe $ µe

Table I: Main processes in the temperature interval 175MeV�
1MeV. If the charge is not specified, the reaction can be
written for all combinations, e.g. ⇡ denotes either of ⇡+, ⇡�

or ⇡0, and µ both muon and antimuon. (There are additional
reactions with much smaller branching fractions, such as the
Dalitz decay ⇡0 ! ��⇤ ! e+e�� at O(1%) [11].)

Summing Eq. (4) over species yields ⇢(T ) from which
the temperature evolution can be extracted as

dT
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= �3ȧ
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(⇢+ P )
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d⇢
. (6)

Eq. (1) and (6) can be solved numerically by using for
example the Runge-Kutta algorithm. The energy density
is computed from the numerical integration of Eq. (4) at
each temperature, and the pressure is similarly obtained
from the spatial trace of the energy-momentum tensor
�ijT

ij = 3P ,

P =
1

3

Z
d3p f(r,p, t)

|p|2

E
.

Density and pressure decrease monotonically with t,
while the scale factor a(t) increases monotonically; any
of them may be used as a clock for further computations.
We will set as origin of time the exit from the QGP.
With the solutions at hand we can backtrack from the

time of nucleosynthesis (a well-studied period [12]) to
the pion gas at temperatures two orders of magnitude
higher, since the entire particle content in this epoch
is well known. We do not resort to usual textbook
power-law approximations since simple computer codes
produce the (numerically) exact solutions for this one-
dimensional evolution-equation set. For computer accu-
racy, it is necessary to set a unit system that minimizes
the number of large powers. We often take (100MeV)
for temperature, energy and chemical potential (kB = 1)
and peV�1 for time and space (c = 1). With this, the
Cavendish constant G turns out to be 1/1.44 (100MeV)2.
Dimensionally, time is an inverse energy, so that 1 s !
1.52⇥ 103 peV�1.
The resulting scale factor is shown in figure 1.
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With this motivation, our concrete study will be
to address the relaxation of a thermal inhomogeneity
at temperature T + �T towards the surrounding en-
vironment value of T , ignoring other quantities that
may separate from equilibrium such as momentum
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calculate the subsequent entropy production to have
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four-momentum p↵ = (E,p) and the fluid four-velocity
U↵ = �V(1,V) respectively, with �V = (1�V2)�1/2. In
a comoving frame, U↵ = (1, 0, 0, 0) and thus p↵U↵ = E.
We have determined the chemical potentials µi from the
current abundances and the scale factor a(t)/a(0). As
they are tiny we do not quote them here.
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reactions with much smaller branching fractions, such as the
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Eq. (1) and (6) can be solved numerically by using for
example the Runge-Kutta algorithm. The energy density
is computed from the numerical integration of Eq. (4) at
each temperature, and the pressure is similarly obtained
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Density and pressure decrease monotonically with t,
while the scale factor a(t) increases monotonically; any
of them may be used as a clock for further computations.
We will set as origin of time the exit from the QGP.
With the solutions at hand we can backtrack from the

time of nucleosynthesis (a well-studied period [12]) to
the pion gas at temperatures two orders of magnitude
higher, since the entire particle content in this epoch
is well known. We do not resort to usual textbook
power-law approximations since simple computer codes
produce the (numerically) exact solutions for this one-
dimensional evolution-equation set. For computer accu-
racy, it is necessary to set a unit system that minimizes
the number of large powers. We often take (100MeV)
for temperature, energy and chemical potential (kB = 1)
and peV�1 for time and space (c = 1). With this, the
Cavendish constant G turns out to be 1/1.44 (100MeV)2.
Dimensionally, time is an inverse energy, so that 1 s !
1.52⇥ 103 peV�1.
The resulting scale factor is shown in figure 1.
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the largest inhomogeneities, if any are present, because
they are the ones opposing di↵usion most.

With this motivation, our concrete study will be
to address the relaxation of a thermal inhomogeneity
at temperature T + �T towards the surrounding en-
vironment value of T , ignoring other quantities that
may separate from equilibrium such as momentum
distributions or chemical inhomogeneities. Then we will
calculate the subsequent entropy production to have
reference values that may be useful in future studies.
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We have determined the chemical potentials µi from the
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a
(⇢+ P )

dT

d⇢
. (6)

Eq. (1) and (6) can be solved numerically by using for
example the Runge-Kutta algorithm. The energy density
is computed from the numerical integration of Eq. (4) at
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With the solutions at hand we can backtrack from the

time of nucleosynthesis (a well-studied period [12]) to
the pion gas at temperatures two orders of magnitude
higher, since the entire particle content in this epoch
is well known. We do not resort to usual textbook
power-law approximations since simple computer codes
produce the (numerically) exact solutions for this one-
dimensional evolution-equation set. For computer accu-
racy, it is necessary to set a unit system that minimizes
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and peV�1 for time and space (c = 1). With this, the
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Figure 1: Computed scale factor as a function of time (solid,
blue online) multiplied by a 1011 factor. The normalization
condition is a(today) = 1, though we take from other work
a(t

nucleosynthesis

) which is where we really end our computa-
tions.We also show the analytic form a(t) /

p
t (dashed line,

red online) that fits the lepton era at smaller temperatures.
As we focuse here on the pion gas, found at earlier times,
roughly from tT=175

= 0 s to tT=100

⇡ 10�2 peV�1 (10�5 s),
that square-root approximation separates significantly from
the actual numerical computation that we employ.

B. Computation of the entropy

For the calculation of the entropy in the homogeneous
case we first note that the thermodynamic magnitudes
are a function of the temperature only. We will also as-
sume thermal equilibrium, vanishing chemical potentials
and adiabatic expansion. Then the conservation of the
entropy per co-moving volume implies sa3 = s0a

3
0 where

s = s(T ) is the entropy density (see for example [13]).
The second principle of thermodynamics gives the

total-entropy increase as

TdS = d(⇢V ) + PdV. (7)

where S = sV is the total entropy and V is the volume.
From this equation it is possible to get the thermody-
namic relations:

s =
1

T
(⇢+ P ) =

dP

dT
. (8)

Therefore the entropy in co-moving volume V is con-
stant and proportional to a3(t)⇢+P

T . Enumerating all the
species (in equilibrium at the same universal T )

s =
⇢1 + · · ·+ ⇢n + P1 + · · ·+ Pn

T
. (9)

The pion gas can be near chemical equilibrium because
the pion production rate (through �� $ ⇡⇡ followed by
⇡+⇡� $ ⇡0⇡0, and similar lepton-lepton inelastic inter-
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this time interval, pions (and also muons) are abundant,
comparably to the (quasi)massless species.
The entropy density may also be written as/ gs(T )T 3,

gs(T ) being the number of e↵ective degrees of freedom.
In particular, for ultrarelativistic particles,
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Due to their relativistic behavior throughout our en-
tire temperature range, the e↵ective number of degrees
of freedom for photons, electrons and neutrinos is con-
stant. The massive species see drops when T < mi as
they become non-relativistic. Our numerical computa-
tion of the entropy can be casted in terms of gs(T ) and
it is plotted in figure 3. In particular, the contribution
of nucleons (as well as all strange and higher-flavor par-
ticles, not mentioned further) to the entropy density is
completely negligible.
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Figure 3: Top plot: aggregated e↵ective number of relativistic
degrees of freedom gs as a function of � = 1/T from numer-
ical calculation. Bottom plot: e↵ective number of degrees of
freedom for pions (solid line, blue online), photons (horizon-
tal solid line, black online), electrons (dotted horizontal line,
green online) and muons (dashed line, red online). Note that
at the highest part of the temperature interval, pions provide
a larger contribution to the entropy density than photons,
though leptons are the largest carriers of entropy.

ature and entropy density

T (r, t) = Tback(t) + �T (r, t) ,

s(r, t) = sback(t) + �s(r, t) . (11)

For the total entropy S we have

S = Sback + �S . (12)

Of course, in local equilibrium entropy is conserved as per
Eq. 9, �Sback = 0, so that entropy production is dS =
d(�S). Setting as simplest initial condition a bubble of
higher T than the surroundings, the temperature profile
of such bulb will evolve according to the heat equation.
Then,

� (�T (r, t)) =
(T )

cp(T )

@ (�T (r, t))

@t
. (13)

with (T ) the heat conductivity. Here the constant-
pressure specific heat cp is defined as the derivative of

Figure 4: Dotted blue online: Thermal conductivity  as func-
tion of temperature at zero chemical potential from solving
the Boltzmann equation. Solid (red online): simple interpo-
lating function employed in the heat equation solver.

the background entropy (neglecting the newly produced
one) with respect to temperature at constant P :

cp(T ) =
@sback(T )

@T

�����
P

. (14)

Since we already calculated the contribution of pions to
the entropy density s⇡back we can immediately compute
the partial specific heat of the pion gas (we will further
drop the superindex ⇡ in this section, as all quantities are
refered to the pion gas alone). The other non-trivial func-
tion is (T ), the thermal conductivity, which depends on
the temperature alone and is known from recent and ear-
lier studies. The numeric data [4] from a variational so-
lution of Boltzmann’s equation following the Chapman-
Enskog expansion is shown in figure 4. Since cp(T ) and
(T ) are nontrivial functions of the temperature, the heat
equation does not admit an immediate analytical solu-
tion, so we numerically solve it by brute force with the
simplest parabolic solver for a partial di↵erential equa-
tion based on the finite-di↵erence method in space and
the Euler method in time. Thus, in figure 4 we also show
a simple interpolating function for the conductivity in
the temperature interval of interest that we employ to
speed up the computer code.
The valley in the conductivity at mid-temperatures oc-

curs because of the m⇡ ' f⇡ scales; the dropping low-
temperature behavior can be obtained from the ⇡⇡ scat-
tering length and non-relativistic kinetic theory, and at
high-T dimensional analysis dictates  / T 2 as visible.
The detailed calculation with the full machinery of phase
shifts, unitarity, chiral perturbation theory, etc. has been
reported elsewhere [4].
The numeric solution of Eq. (13), �T (r, t), is shown

in figure 5 with an initial condition that has a spherical
profile Gaussian in the radius,

�T (r, 0) = �T0 e
� r2

2R2 . (15)
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= 0 s to tT=100

⇡ 10�2 peV�1 (10�5 s),
that square-root approximation separates significantly from
the actual numerical computation that we employ.

B. Computation of the entropy

For the calculation of the entropy in the homogeneous
case we first note that the thermodynamic magnitudes
are a function of the temperature only. We will also as-
sume thermal equilibrium, vanishing chemical potentials
and adiabatic expansion. Then the conservation of the
entropy per co-moving volume implies sa3 = s0a

3
0 where

s = s(T ) is the entropy density (see for example [13]).
The second principle of thermodynamics gives the

total-entropy increase as

TdS = d(⇢V ) + PdV. (7)

where S = sV is the total entropy and V is the volume.
From this equation it is possible to get the thermody-
namic relations:

s =
1

T
(⇢+ P ) =

dP

dT
. (8)

Therefore the entropy in co-moving volume V is con-
stant and proportional to a3(t)⇢+P

T . Enumerating all the
species (in equilibrium at the same universal T )

s =
⇢1 + · · ·+ ⇢n + P1 + · · ·+ Pn

T
. (9)

The pion gas can be near chemical equilibrium because
the pion production rate (through �� $ ⇡⇡ followed by
⇡+⇡� $ ⇡0⇡0, and similar lepton-lepton inelastic inter-
actions) is su�cient to o↵set the pion decay rate. Sugiero
dar algún número orientativo. In figure 2 we show the
time-evolution of the number density for the more rele-
vant temperature span between 175 and 70 MeV. During

Figure 2: Number density of the most abundant species
at this epoch. Top line (black online): photon number den-
sity. Red online: pion number density. Blue online: electron
number density. Green, dashed line: muon number density.
Bottom line (black, dotted online): neutrino number density.
The number density of nucleons is completely negligible dur-
ing all this time interval.

this time interval, pions (and also muons) are abundant,
comparably to the (quasi)massless species.
The entropy density may also be written as/ gs(T )T 3,

gs(T ) being the number of e↵ective degrees of freedom.
In particular, for ultrarelativistic particles,

s(T ) = gs
2⇡2

45
T 3 . (10)

Due to their relativistic behavior throughout our en-
tire temperature range, the e↵ective number of degrees
of freedom for photons, electrons and neutrinos is con-
stant. The massive species see drops when T < mi as
they become non-relativistic. Our numerical computa-
tion of the entropy can be casted in terms of gs(T ) and
it is plotted in figure 3. In particular, the contribution
of nucleons (as well as all strange and higher-flavor par-
ticles, not mentioned further) to the entropy density is
completely negligible.

III. ENTROPY PRODUCTION BY LOCAL
DEPARTURES FROM (THERMAL)

HOMOGENEITY

A. Solution to the heat equation

In this section, we consider separations from the homo-
geneous background described in section II. For simplic-
ity we will take inhomogeneities to be spherical bulbs
at temperature di↵erent from the background. Thus,
the temperature field T (r, t) will now also acquire a de-
pendence on position. Local thermal equilibrium as well
as chemical equilibrium is still assumed (and departures
thereof can be separately considered in further investiga-
tions that we do not attempt here).
The departure from the background modifies temper-
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the largest inhomogeneities, if any are present, because
they are the ones opposing di↵usion most.

With this motivation, our concrete study will be
to address the relaxation of a thermal inhomogeneity
at temperature T + �T towards the surrounding en-
vironment value of T , ignoring other quantities that
may separate from equilibrium such as momentum
distributions or chemical inhomogeneities. Then we will
calculate the subsequent entropy production to have
reference values that may be useful in future studies.

II. ENTROPY IN THE HOMOGENEOUS
FRIEDMANN-ROBERTSON-WALKER

COSMOLOGY

A. System of equations for universe evolution

In this section we quickly review the standard statisti-
cal physics in the spatially flat ( = 0) [10] homogeneous
cosmos that serves as background for later study of inho-
mogeneities. In this case the two independent Einstein
equations give rise to the the Friedmann equation:
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for the evolution of the expansion parameter a(t) from
the Friedmann equation and the balance equation

d⇢

dt
= �3ȧ

a
(⇢+ P ) , (2)

where P is the total pressure and the energy density ⇢
is the sum of the partial energy densities for the various
species

⇢ = ⇢� + ⇢⌫,⌫̄ + ⇢e± + ⇢µ,µ̄ + ⇢⇡±,⇡0 + ⇢N,N̄ + . . . (3)

In table I we summarize all possible interactions in the
temperature range we are discussing, 1MeV < T < 175
MeV. In particular, for entropy considerations, nucleons
(already non-relativistic) and dark matter are not impor-
tant. Pions and muons behave as radiation in the upper
end of the temperature range.

This can be seen for each species contribution, with
degeneracy gi

⇢i =
gi

(2⇡)3

Z
d3pEi fi(r,p, t) , (4)

because in thermal equilibrium, the function fi (usual
Fermi-Dirac or Bose-Einstein distribution)

fi(r,p, t) =
1

e(p↵U↵(r,t)�µi(r,t))/T (r,t) ± 1
, (5)

suppresses the contribution by e�mi/T . Here we have
considered the more general case of local instantaneous

thermodynamic equilibrium which will be useful later.
As usual, p↵ and U↵ are the components of the particle
four-momentum p↵ = (E,p) and the fluid four-velocity
U↵ = �V(1,V) respectively, with �V = (1�V2)�1/2. In
a comoving frame, U↵ = (1, 0, 0, 0) and thus p↵U↵ = E.
We have determined the chemical potentials µi from the
current abundances and the scale factor a(t)/a(0). As
they are tiny we do not quote them here.

⇡0 $ �� NN $ NN e⇡ $ e⇡
⇡⇡ $ ⇡⇡ NN̄ $ �� e e $ e e

⇡+ $ µ+⌫µ µ+ $ e+⌫e⌫µ e� $ e�
⇡⇡ $ �� µ⇡ $ µ⇡ �� $ e�e+

⌫e⌫e $ e+e� µ�� $ µ�� µµ $ µµ
⌫µ⌫µ $ µ+µ� �� $ µ�µ+ µe $ µe

Table I: Main processes in the temperature interval 175MeV�
1MeV. If the charge is not specified, the reaction can be
written for all combinations, e.g. ⇡ denotes either of ⇡+, ⇡�

or ⇡0, and µ both muon and antimuon. (There are additional
reactions with much smaller branching fractions, such as the
Dalitz decay ⇡0 ! ��⇤ ! e+e�� at O(1%) [11].)

Summing Eq. (4) over species yields ⇢(T ) from which
the temperature evolution can be extracted as

dT

dt
= �3ȧ

a
(⇢+ P )

dT

d⇢
. (6)

Eq. (1) and (6) can be solved numerically by using for
example the Runge-Kutta algorithm. The energy density
is computed from the numerical integration of Eq. (4) at
each temperature, and the pressure is similarly obtained
from the spatial trace of the energy-momentum tensor
�ijT

ij = 3P ,

P =
1

3

Z
d3p f(r,p, t)

|p|2

E
.

Density and pressure decrease monotonically with t,
while the scale factor a(t) increases monotonically; any
of them may be used as a clock for further computations.
We will set as origin of time the exit from the QGP.
With the solutions at hand we can backtrack from the

time of nucleosynthesis (a well-studied period [12]) to
the pion gas at temperatures two orders of magnitude
higher, since the entire particle content in this epoch
is well known. We do not resort to usual textbook
power-law approximations since simple computer codes
produce the (numerically) exact solutions for this one-
dimensional evolution-equation set. For computer accu-
racy, it is necessary to set a unit system that minimizes
the number of large powers. We often take (100MeV)
for temperature, energy and chemical potential (kB = 1)
and peV�1 for time and space (c = 1). With this, the
Cavendish constant G turns out to be 1/1.44 (100MeV)2.
Dimensionally, time is an inverse energy, so that 1 s !
1.52⇥ 103 peV�1.
The resulting scale factor is shown in figure 1.
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⇡ 10�2 peV�1 (10�5 s),
that square-root approximation separates significantly from
the actual numerical computation that we employ.

B. Computation of the entropy

For the calculation of the entropy in the homogeneous
case we first note that the thermodynamic magnitudes
are a function of the temperature only. We will also as-
sume thermal equilibrium, vanishing chemical potentials
and adiabatic expansion. Then the conservation of the
entropy per co-moving volume implies sa3 = s0a

3
0 where

s = s(T ) is the entropy density (see for example [13]).
The second principle of thermodynamics gives the

total-entropy increase as

TdS = d(⇢V ) + PdV. (7)

where S = sV is the total entropy and V is the volume.
From this equation it is possible to get the thermody-
namic relations:

s =
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T
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. (8)

Therefore the entropy in co-moving volume V is con-
stant and proportional to a3(t)⇢+P

T . Enumerating all the
species (in equilibrium at the same universal T )

s =
⇢1 + · · ·+ ⇢n + P1 + · · ·+ Pn

T
. (9)

The pion gas can be near chemical equilibrium because
the pion production rate (through �� $ ⇡⇡ followed by
⇡+⇡� $ ⇡0⇡0, and similar lepton-lepton inelastic inter-
actions) is su�cient to o↵set the pion decay rate. Sugiero
dar algún número orientativo. In figure 2 we show the
time-evolution of the number density for the more rele-
vant temperature span between 175 and 70 MeV. During

Figure 2: Number density of the most abundant species
at this epoch. Top line (black online): photon number den-
sity. Red online: pion number density. Blue online: electron
number density. Green, dashed line: muon number density.
Bottom line (black, dotted online): neutrino number density.
The number density of nucleons is completely negligible dur-
ing all this time interval.

this time interval, pions (and also muons) are abundant,
comparably to the (quasi)massless species.
The entropy density may also be written as/ gs(T )T 3,

gs(T ) being the number of e↵ective degrees of freedom.
In particular, for ultrarelativistic particles,

s(T ) = gs
2⇡2

45
T 3 . (10)

Due to their relativistic behavior throughout our en-
tire temperature range, the e↵ective number of degrees
of freedom for photons, electrons and neutrinos is con-
stant. The massive species see drops when T < mi as
they become non-relativistic. Our numerical computa-
tion of the entropy can be casted in terms of gs(T ) and
it is plotted in figure 3. In particular, the contribution
of nucleons (as well as all strange and higher-flavor par-
ticles, not mentioned further) to the entropy density is
completely negligible.
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In this section, we consider separations from the homo-
geneous background described in section II. For simplic-
ity we will take inhomogeneities to be spherical bulbs
at temperature di↵erent from the background. Thus,
the temperature field T (r, t) will now also acquire a de-
pendence on position. Local thermal equilibrium as well
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thereof can be separately considered in further investiga-
tions that we do not attempt here).
The departure from the background modifies temper-
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is well known. We do not resort to usual textbook
power-law approximations since simple computer codes
produce the (numerically) exact solutions for this one-
dimensional evolution-equation set. For computer accu-
racy, it is necessary to set a unit system that minimizes
the number of large powers. We often take (100MeV)
for temperature, energy and chemical potential (kB = 1)
and peV�1 for time and space (c = 1). With this, the
Cavendish constant G turns out to be 1/1.44 (100MeV)2.
Dimensionally, time is an inverse energy, so that 1 s !
1.52⇥ 103 peV�1.
The resulting scale factor is shown in figure 1.
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Still they have to erase any previous fluctuation to fit the CMB  
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We point out that in the early universe, for temperatures in the approximate interval 175-100 MeV,
pions carried the largest share of the entropy and supported the largest inhomogeneities. We then
examine the production of entropy in a pion gas, particularizing to thermal inhomogeneities, from
its known thermal conductivity. We finally put that production due to such thermal inhomogeneities
in the context of this relatively unexplored phase of early-universe cosmology.

I. INTRODUCTION

The hadron and lepton phase of early-universe cosmol-
ogy, spanning a temperature range between 175 MeV and
1 MeV (between the quark-gluon plasma and cosmonu-
cleosynthesis), has received only moderate attention in
the literature [1], in spite of it being very rich in terms
of the number of particles and interactions there present,
and the underlying physics being relatively well known.
This is probably because the only relic particles left from
that era in the universe expansion form the cosmic neu-
trino background [2] that there is at present no hope to
detect. In spite of the dearth of direct messengers from
that era, it is important to pursue its study for future
precision work in cosmology.

Particularly, there are few studies of the earlier part
of the interval, just after exiting the quark-gluon plasma
around 175-160 MeV [3], when a significant fraction of
the universe’s entropy is carried by strongly interacting
particles such as pions; only as the temperature drops
below about 100 MeV, their decays ⇡0 ! ��, ⇡� !
µ⌫̄µ, etc. add this entropy to that carried by leptons and
photons.

Much information on the pion phase is available from
theoretical studies pertaining to the field of Relativistic
Heavy Ion Collisions. Particularly, transport coe�cients
have been well calculated in recent years [4–7] and can
be applied to early-universe physics. This is our focuse
in the present work. The particular problem that we will
address is entropy production. Though most treatments
assume that the universe’s expansion is adiabatic and al-
ways at equilibrium, this is just the simplest hypothesis
and one may fancy consider separations from that equi-
librium.

One can argue that the rates of the particle-physics
processes characterized in the Standard Model are larger
than the expansion Hubble factor H = ȧ/a, so the hy-
pothesis of chemical and thermal equilibrium is reason-
able, and the universe expands and cools down adiabat-
ically. We of course concur with the analysis. But one
cannot discard large past fluctuations in temperature or
other quantities that have not survived to our days pre-
cisely because of the large equilibration rates damping
them. So there is always a level of hypothesis involved.

What is solid information is that the fluctuations in the
Cosmic Microwave Background (CMB) are measured and
found small (rT/T < 10�5). So one can opt for evolving
large initial-state inhomogeneities so they are this small
at the time of recombination, or for considering inhomo-
geneities that are so small in size as to evade observation
in the CMB (cosmological versus microscopic inhomo-
geneities). Further, since we will consider a radiation-
dominated epoch, no structure-formation process is in-
volved [8].

The largest contribution to the total entropy at ze-
roth order during most of the time, is due to the
(quasi)massless species (photons, neutrinos and elec-
trons), as will be reminded below. Yet in a hot gas, since
transport phenomena are di↵usive, the typical transport
coe�cient (to which entropy production and the relax-
ation rate will be proportional), drops with the inverse
cross-section. The case in point for this study is the ther-
mal conductivity,  / 1/�. This means that the largest
inhomogeneities at a given stage of the universe evolu-
tion will be found in the gaseous subsystem which, being
relativistic, is a↵ected by the largest cross-sections.

In the particle phase with components that are pho-
tons, leptons, and pions, the largest entropy production is
thus likely to take place in the pion gas. Heavier hadrons
are barely present already shortly after the decay of the
quark-gluon plasma, for example the kaon multiplicity [9]
is down by at least an order of magnitude respect to the
pion multiplicity. Therefore, though in principle kaon in-
homogeneities can di↵use and produce entropy, we will
ignore the phenomenon altogether.

This is because their cross-sections are dictated by
the strong QCD interactions and are in the 10-milibarn
range, way larger than (Debye-screened, electromag-
netic) lepton interactions. Even letting aside inhomo-
geneities, for T > 80 MeV, pions actually carry a larger
portion of the total homogeneous-gas entropy than pho-
tons (though not larger than that of leptons) because
of their multiplicity, as will be shown below in figure 3
(bottom plot). Thus, there are two reasons to explore
entropy and entropy production in the pion gas itself.
In the high temperature end just after hadronization of
the quark-gluon plasma, pions are large carriers of en-
tropy. And second, they are the ones that can support
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Figure 3: Top plot: aggregated e↵ective number of relativistic
degrees of freedom gs as a function of � = 1/T from numer-
ical calculation. Bottom plot: e↵ective number of degrees of
freedom for pions (solid line, blue online), photons (horizon-
tal solid line, black online), electrons (dotted horizontal line,
green online) and muons (dashed line, red online). Note that
at the highest part of the temperature interval, pions provide
a larger contribution to the entropy density than photons,
though leptons are the largest carriers of entropy.

ature and entropy density

T (r, t) = Tback(t) + �T (r, t) ,

s(r, t) = sback(t) + �s(r, t) . (11)

For the total entropy S we have

S = Sback + �S . (12)

Of course, in local equilibrium entropy is conserved as per
Eq. 9, �Sback = 0, so that entropy production is dS =
d(�S). Setting as simplest initial condition a bubble of
higher T than the surroundings, the temperature profile
of such bulb will evolve according to the heat equation.
Then,

� (�T (r, t)) =
(T )

cp(T )

@ (�T (r, t))

@t
. (13)

with (T ) the heat conductivity. Here the constant-
pressure specific heat cp is defined as the derivative of

Figure 4: Dotted blue online: Thermal conductivity  as func-
tion of temperature at zero chemical potential from solving
the Boltzmann equation. Solid (red online): simple interpo-
lating function employed in the heat equation solver.

the background entropy (neglecting the newly produced
one) with respect to temperature at constant P :

cp(T ) =
@sback(T )

@T

�����
P

. (14)

Since we already calculated the contribution of pions to
the entropy density s⇡back we can immediately compute
the partial specific heat of the pion gas (we will further
drop the superindex ⇡ in this section, as all quantities are
refered to the pion gas alone). The other non-trivial func-
tion is (T ), the thermal conductivity, which depends on
the temperature alone and is known from recent and ear-
lier studies. The numeric data [4] from a variational so-
lution of Boltzmann’s equation following the Chapman-
Enskog expansion is shown in figure 4. Since cp(T ) and
(T ) are nontrivial functions of the temperature, the heat
equation does not admit an immediate analytical solu-
tion, so we numerically solve it by brute force with the
simplest parabolic solver for a partial di↵erential equa-
tion based on the finite-di↵erence method in space and
the Euler method in time. Thus, in figure 4 we also show
a simple interpolating function for the conductivity in
the temperature interval of interest that we employ to
speed up the computer code.
The valley in the conductivity at mid-temperatures oc-

curs because of the m⇡ ' f⇡ scales; the dropping low-
temperature behavior can be obtained from the ⇡⇡ scat-
tering length and non-relativistic kinetic theory, and at
high-T dimensional analysis dictates  / T 2 as visible.
The detailed calculation with the full machinery of phase
shifts, unitarity, chiral perturbation theory, etc. has been
reported elsewhere [4].
The numeric solution of Eq. (13), �T (r, t), is shown

in figure 5 with an initial condition that has a spherical
profile Gaussian in the radius,

�T (r, 0) = �T0 e
� r2

2R2 . (15)
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Figure 5: Temperature profile T (r, t) of an inhomogeneity of
initial size R = 2.5 ⇥ 105 fm, as a function of the radius r
for increasing times. Top, solid black line: initial condition
T (0, 0) = 170MeV. Brown solid line, much flatter of the
bottom: T (r, tr), tr ⇡ 1MeV�1 (⇡ 10�22 s). Other lines illus-
trate the time evolution of the inhomogeneity at intermediate
times.

Here �T0 is the initial central temperature of the inhomo-
geneity over that of the background, and R is the typical
radius.

There are several considerations to choose the size of
the inhomogeneity. At the largest scale, we can ask our-
selves what is the largest possible radius that will ho-
mogenize during the pion gas lifetime. We must also
take the size of the bulb small enough so as to respect
CMB constraints. As can be glanced back in figure 1,
the scale factor can be nicely fitted by a(t) /

p
t. Thus,

the Hubble horizon reached during the pion gas is among
10�3�10�2 peV�1. This means that no homogenization
can take place over distances larger than about a light
second (1�10)⇥10�3 peV�1, or squaring and inverting,
R must be no larger than ⇡ 1016� 1017fm. This guaran-
tees that the thermal flattening of the bulb never violates
causality. Further, since the first order heat equation
is not relativistically causal and we have not examined
the 2nd order formalism, we have to restrict ourselves to
even significantly smaller spheres. A further considera-
tion is that if the inhomogeneity is too large, its relax-
ation time will be so great that when it reaches thermal
equilibrium, there are no pions left (they are abundant at
Tback ⇡ 175 � 100 MeV). For this reason (exclusively of
simplicity), we will restrict the study to inhomogeneities
no bigger than R ⇡ 109 fm. These are small enough not
to perturb the metric significantly, so we can treat them
simply as Newtonian perturbations. Finally, when we
consider the smallest radii of the inhomogeneity, in the
typical nuclear scale or somewhat more, RHIC guidance
is available.

B. Entropy increase in one inhomogeneity

The variation of the entropy of our inhomogeneity of
volume V during the relaxation process can be written
as:

dST

dt
=

dSV̄

dt
+

dSV

dt
, (16)

where ST denotes the total entropy, dSV̄ represents the
entropy exchanged with the rest of the universe and dSV

the inner entropy production. The exchanged entropy
dSV̄ can be obtained by means of an integral of the in-
comming entropy current over the surface of the inhomo-
geneity @V . We will consider the exchange as positive if
entropy is supplied to the subsystem by the surroundings.
The entropy current will be denoted by js. Concern-
ing the internal entropy production dSV we introduce
the rate of entropy production �s per unit volume and
unit time inside the system. In terms of these quantities,
dSV̄ /dt and dSV /dt may be written as

dSV̄

dt
= �

Z

@V
js · n d⌃ ,

dSV

dt
=

Z

V
�s dV . (17)

Expressing Eq. (16) in terms of the entropy current
and density we have:

dST

dt
=

d

dt

Z

V
sT dV = �

Z

@V
d⌃ js ·n+

Z

V
dV �s (18)

and use of Gauss’s theorem yields the equation

dsT
dt

= �r · js + �s .

For small flows, linear laws hold, such as the Fourier law
for the heat flux:

je = �(T )rT ; (19)

where je is the heat current vector. Other examples of
linear laws are Fick’s law for a flavor i concentration flux,
ji = �Dirni, withDi being a di↵usion coe�cient for the
particle species i; or Ohm’s law for the electric current
density jQ = �r� with jQ being the electric current, �
the electric potential and  the electric conductivity. A
general form for the entropy production �s is

�s = je·r
✓
1

T

◆
�
X

i


ji ·r

⇣µi

T

⌘
+

Ak vk
T

�
+

I · jQ
T

· · · ,

(20)
with Ak, vk the activities and the stoichiometric coe�-
cients for the ith species involved in inelastic particle re-
actions. In the following we will consider the entropy
production �s for the thermal flow alone (first term).
Basic thermodynamics yields

dU = T dST = (je · n) d⌃ dt (21)
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where U is the internal energy of the inhomogeneity. In-
tegrating over the surface and in time, and using Gauss’s
theorem, we find the entropy produced in the process of
relaxation of the inhomogeneity:

�ST =

Z

@V
d⌃ dt

je · n
T

=

Z

V
dV dtr ·

✓
je
T

◆
(22)

Applying Fourier’s law in Eq. (19) we find:

�ST =

Z
dV dtr ·

✓
� 1

T
(T )rT

◆
. (23)

Applying now Leibnitz’s rule we get

�ST =

Z
dV dt

(T )

T 2

�
|r�T |2 � T��T

�
,

(24)

which is positive, �ST � 0, since �T = �(�T )  0
(remember that Tback was position-independent).

Comparing with Eq. (17) we find the production of
entropy and the divergence of its flow

�s(r, t) =
(T )

T 2
|r�T (r, t)|2 , (25)

�r · js(r, t) =
(T )

T
��T (r, t) . (26)

The internal entropy produced in dissipating an inho-
mogeneity is an integrated entropy �SV , obtained from
the entropy-density production �s after integrating over
the time and space when and where the inhomogeneity
was relevant,

�SV (�T0) =

Z
dV dt�s(r, t) . (27)

To ascertain the size of this produced entropy and assess
its relative importance, it is natural to quotient it by the
background entropy in the same volume, Sback, that for
a spherical disturbance integrating up to the radius R
(defined above in Eq. (15) as the characteristic Gaussian
fall-o↵ radius) is

Sback(R, Tback) '
4

3
⇡
⇣p

2R
⌘3

sback(Tback) . (28)

We now have all necessary equations and can proceed
to the numerical computation.

IV. NUMERICAL RESULTS

A. One inhomogeneity only

To check the computer codes and understand the typ-
ical order of magnitude, let us consider a time period

that is short enough so that the background tempera-
ture does not vary appreciably and can be considered
constant (T = T0). That means in particular that  and
cp also remain constant (in fact the inhomogeneity has
not fully spread in this case, but we can deal with this
numerically later). Then we can make the replacement

�s '
(T0)

T 2
0 R4

�T 2
0 r

2e�
r2

2R2 , (29)

wherein T0 = Tback + �T0. For a temperature interval
from 175 MeV to 170 MeV (t 2 [0 � 1013] MeV�1), we
keep (T )/T 2

0 unchanged and of order one, thus, �s /
�T 2

0
R4 r2e�

r2

2R2 . Carrying out the integral over space, one
gets

Z
dV �s / �T 2

0 R . (30)

To put some numbers, take an inhomogeneity of size
108 fm at �T0 ⇡ 10MeV; one has then

R
dV �s ' 107

MeV. This element multiplied by a time interval �t ⇡
1013 MeV�1 gives an integrated entropy of order 1020.
Nevertheless, since at 175 MeV sback is numerically of
order 106 MeV, the background entropy Sback given by
Eq. (28) is ⇡ 1023, so the ratio �SV /Sback is ⇡ 10�3.
Inasmuch as we are considering just a tiny time interval
in which the bubble did not have enough time to evolve,
the value of the entropy produced over the entire life of
the bubble must be larger than this figure, and thus not
negligible at all (but requires a numeric computation).
Now, by solving the heat equation for T (r, t) in

Eq. (13), we can compute the integral in Eq. (27) with
Eq. (25) and thus numerically obtain �SV .

Table II: Values of �SV /Sback (in units of 10�3) for di↵erent
temperatures and, for each column, a value of the inhomo-
geneity size given by R

1

= 2.5 ⇥ 109 , R
2

= 2.5 ⇥ 107 , R
3

=
2.5 ⇥ 105 , R

4

= 2.5 ⇥ 102 in fm units. Temperatures are in
MeV.

Tback �T
0

R
1

R
2

R
3

R
4

138

35 32.6 35.1 35.1 46.1
30 24.0 25.8 25.8 35.3
25 16.6 17.9 17.9 28.5
20 10.6 11.5 11.5 22.4
15 5.98 6.44 6.44 17.7
10 2.66 2.86 2.86 19.8
5 0.7 0.7 0.7 11.4

100

50 196.0 208.4 208.4 234.4
45 158.4 168.3 168.3 195.5
40 124.7 132.4 132.4 162.0
35 95.1 100.9 100.9 132.4
30 69.6 73.7 73.7 105.5
25 48.0 50.9 50.9 83.4
20 30.5 32.3 32.3 67.3
15 17.0 18.0 18.0 53.5
10 7.5 7.9 7.9 42.4
5 1.9 2.0 2.0 49.7
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Nevertheless, since at 175 MeV sback is numerically of
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Inasmuch as we are considering just a tiny time interval
in which the bubble did not have enough time to evolve,
the value of the entropy produced over the entire life of
the bubble must be larger than this figure, and thus not
negligible at all (but requires a numeric computation).
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Eq. (13), we can compute the integral in Eq. (27) with
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negligible at all (but requires a numeric computation).
Now, by solving the heat equation for T (r, t) in

Eq. (13), we can compute the integral in Eq. (27) with
Eq. (25) and thus numerically obtain �SV .

Table II: Values of �SV /Sback (in units of 10�3) for di↵erent
temperatures and, for each column, a value of the inhomo-
geneity size given by R

1

= 2.5 ⇥ 109 , R
2

= 2.5 ⇥ 107 , R
3

=
2.5 ⇥ 105 , R

4

= 2.5 ⇥ 102 in fm units. Temperatures are in
MeV.

Tback �T
0

R
1

R
2

R
3

R
4

138

35 32.6 35.1 35.1 46.1
30 24.0 25.8 25.8 35.3
25 16.6 17.9 17.9 28.5
20 10.6 11.5 11.5 22.4
15 5.98 6.44 6.44 17.7
10 2.66 2.86 2.86 19.8
5 0.7 0.7 0.7 11.4

100

50 196.0 208.4 208.4 234.4
45 158.4 168.3 168.3 195.5
40 124.7 132.4 132.4 162.0
35 95.1 100.9 100.9 132.4
30 69.6 73.7 73.7 105.5
25 48.0 50.9 50.9 83.4
20 30.5 32.3 32.3 67.3
15 17.0 18.0 18.0 53.5
10 7.5 7.9 7.9 42.4
5 1.9 2.0 2.0 49.7
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as can the pressure scalar

P = −1
3
�µ⌫T

µ⌫

. (A.7)

In the absence of external currents the energy-momentum tensor is conserved:

@
µ

Tµ⌫ = 0 . (A.8)

Eq. (A.8) contains four equations. Contracting this set of equations with u
⌫

and �↵

⌫

we obtain respectively

D✏ +w∇µu
µ

= 0 , (A.9)

wDu↵ −∇↵P = 0 , (A.10)

where we have defined D ≡ uµ@
µ

and ∇↵ ≡ �↵µ@
µ

, in such a way that the space-time
derivative is separated into a time-like and space-like components

@µ = uµD +∇µ . (A.11)

Note that with these definitions @µu
µ

= ∇µu
µ

and u
µ

∇µ = 0.
Eq. (A.9) corresponds to the relativistic version of the “equation of energy” and

Eq. (A.10) to the relativistic generalization of Euler’s equation.
If the system presents a conserved particle number we can also define a four-particle

current
nµ = nuµ , (A.12)

whose first component gives the particle density n = uµn
µ

. This vector is also conserved:

@
µ

nµ = 0 , (A.13)

that can be written as
Dn + n∇µu

µ

= 0 , (A.14)

that is the continuity equation for an ideal fluid.

A.2 Viscous hydrodynamics

To take into account the dissipative corrections in the hydrodynamics, extra terms
should appear in the expressions of the energy-momentum tensor Tµ⌫ and the particle
four-flow nµ [LL87]:

Tµ⌫ = wuµu⌫ − P⌘µ⌫ + ⌧µ⌫ , (A.15)

nµ = nuµ + ⌫µ . (A.16)

The form of these dissipative parts depends on the choice we make of the reference
frame (see disscusion in Sec. 2.4). We will use the Landau-Lifshitz frame defined by the
conditions that the momentum density should vanish in the local rest reference frame.

T i0 = wuiu0 + ⌧ i0 = 0 if u
i

= 0→ ⌧ i0 = 0 . (A.17)

Appendix A

Relativistic Hydrodynamics

A.1 Ideal hydrodynamics

The dynamics of a relativistic fluid is encoded in the description of relativistic hydro-
dynamics. The fluid is described by its energy density ✏(t,x), its pressure field P (t,x)
and its four-velocity uµ defined as:

uµ(t,x) ≡ dxµ

d⌧
, (A.1)

where xµ = (t, x, y, z) and ⌧ is the proper time. The four-velocity is expressed as

uµ = �(1,v) , (A.2)

where � = √1 − v2 and v is the three-velocity of the fluid element. The four-velocity
satisfies the relativistic normalization u

µ

uµ = 1 and in the local rest frame it takes the
particular value:

uµ = (1,0) . (A.3)

The two functions ✏ and P are related through the equation of state P = P (✏) and
they enter in the relativistic description of the energy content of the fluid, i.e. the
energy-momentum tensor, Tµ⌫ . For an ideal gas, it has the form:

Tµ⌫ = ✏uµu⌫ − P�µ⌫ , (A.4)

where �µ⌫ ≡ ⌘µ⌫ − uµu⌫ is a projector operator orthogonal to uµ (�µ⌫u
µ

= 0). It can
also be written in terms of the enthalpy density w = ✏ + P as:

Tµ⌫ = wuµu⌫ − P⌘µ⌫ . (A.5)

In the nonrelativistic limit (P � ✏) the enthalpy density reduces to the mass density
w →mn of the fluid. In an arbitrary frame, the energy density can be extracted from
the energy-momentum as

✏ = u
µ

u
⌫

Tµ⌫ (A.6)
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As the energy flow (T 0i) is equal to the momentum density (T i0), that also means
that the velocity is associated with the energy flow. For this reason, sometimes the
Landau condition is given in the form of a condition over the velocity of the system to
be paralell to the energy flow [GvLvW80]:

uµ = Tµ⌫u
⌫

u
↵

T↵�u
�

. (A.18)

The Landau condition reads in the local rest reference frame

⌧ i0 = 0 . (A.19)

There are still two more conditions in order to define properly the system. The
energy and particle densities are defined out of equilibrium in such a way that they
coincide with the equilibrium values i.e. to be out of equilibrium does not change the
energy and particle content of the system. Taking the definitions of these two quantities
the conditions read (in the local rest reference frame):

⌧00 = 0, (A.20)

⌫0 = 0 . (A.21)

In an arbitrary reference frame they are:

⌧µ⌫u
µ

= 0 , (A.22)

⌫µu
µ

= 0 . (A.23)

We will refer to Eqs. (A.18), (A.22), (A.23) as the conditions of fit.
The energy-momentum tensor and the particle flow must obey the conservation laws

given in Eqs. (A.8) and (A.13).
The equation of continuity is given from Eq. (A.13)

Dn + n∇µu
µ

+∇µ⌫
µ

− ⌫
µ

Duµ = 0 , (A.24)

and the rest of the equations of fluid motions are obtained by projecting Eq. (A.8)
along uµ and �↵

⌫

respectively

D✏ +w@
µ

uµ − ⌧µ⌫∇{µu⌫} = 0 , (A.25)

wDu↵ −∇↵P +�↵

⌫

@
µ

⌧µ⌫ = 0 , (A.26)

where

A{µB⌫} = 1

2
(A

µ

B
⌫

+A
⌫

B
µ

) . (A.27)

Eqs. (A.25) and (A.26) are the relativistic generalization of the Navier-Stokes equa-
tions.

Landau-Lifshitz frame  

Entalpy 

Equation 
 of state 
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or � ⌧µ⌫ = 2⌘∇{µu⌫} + �⇣ − 2

3

⌘�@
↵

u↵�µ⌫ ,

⌫
µ

= − �nT
w

�2 ∇
µ

� µ
T

� ,
(A.38)

where ⌘, ⇣ and  should be non-negative coe�cients, called shear viscosity, bulk or
volume viscosity and thermal or heat conductivity, respectively. The factor (nT �w)2
in the definition of the thermal conductivity is needed if one wants to match that
expression with the relativistic Fourier’s law. We have detailed this step in Sec. 5.1.1.
Note, that from the explicit form of the dissipative terms in (A.38) it is evident that
the conditions (A.22) and (A.23) are fullfilled.

A.3 Microscopic relations

It is essential to derive the equations that relate the microscopical properties of the
particles and the macroscopic quantities that characterize the fluid. These equations
are obtained by using the one-particle distribution function f

p

(t,x). For example, the
particle four-flow, noting that uµ = pµ�E

p

:

nµ(t,x) = g� d3p
pµ(2⇡)3E

p

f
p

(t,x) , (A.39)

where E
p

is just the on-shell energy of the particle E
p

= p
0

= �m2 + p2. The energy
momentum tensor reads:

Tµ⌫(t,x) = g� d3p
pµp⌫(2⇡)3E

p

f
p

(t,x) . (A.40)

If the system is only slightly out of equilibrium, the one-particle distribution func-
tion can be expressed as the equilibrium distribution function plus a deviation from
equilibrium. As in the case of first order Chapman-Enskog expansion

f
p

(t,x) = n
p

(t,x) + f (1)
p

(t,x) , (A.41)

where the equilibrium distribution function for a Bose-Einstein gas reads (in the local
rest reference frame)

n
p

(t,x) = 1

e�(Ep

−µ) − 1 . (A.42)

With the help of this factorization the particle four-flow can be separated into an
equilibrium and a dissipative part:

nuµ(t,x) = g� d3p
pµ(2⇡)3E

p

n
p

(t,x) (A.43)

and

⌫µ(t,x) = g� d3p
pµ(2⇡)3E

p

f (1)
p

(t,x) . (A.44)

Dissipative contribution to the  
energy-momentum tensor and current 
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The form of the tensors ⌧µ⌫ and ⌫µ is unique using the law of entropy increase and
the equations of motion. The four-entropy flow is defined as

sµ = suµ − µ

T
⌫µ . (A.28)

The law of entropy increase reads
@
µ

sµ ≥ 0 . (A.29)

Introducing (A.28) into (A.29) and using that D = uµ@
µ

we find

@
µ

sµ =Ds + s@
µ

uµ − @
µ

�µ
T
⌫µ� . (A.30)

Using now the equation of state (w = Ts + µn) and the Gibbs-Duhem equation (2.40)
we can transform the previous equation into

@
µ

sµ = D✏

T
− µ

T
Dn + w

T
@
µ

uµ − µ

T
n∇

µ

uµ − @
µ

�µ
T
⌫µ� . (A.31)

Now we insert the Navier-Stokes equation (A.25) in order to simplify the relation
together with Eq. (A.23) that results in the identity

⌫µ∇
µ

�µ
T
� = ⌫µ@

µ

�µ
T
� . (A.32)

We finally obtain for the four-divergence of the entropy flow:

@
µ

sµ = 1

T
⌧µ⌫∇{µu⌫} − ⌫µ∇µ

�µ
T
� ≥ 0 . (A.33)

Usually, the tensor ⌧µ⌫ is separated into a traceless part that we will call ⇡µ⌫ and a
part with non-vanishing trace [Rom10],

⌧µ⌫ = ⇡µ⌫ +�µ⌫

1

3
⌧↵
↵

. (A.34)

Analogously the tensor ∇{µu⌫} is separated into a traceless (∇�µu⌫�) and a traceful
part: ∇{µu⌫} = 1

2
∇�µu⌫� + 1

3
�

µ⌫

∇
↵

u↵ . (A.35)

Then, Eq. (A.33) transforms to

@
µ

sµ = 1

2T
⇡µ⌫∇�µu⌫� + 1

3T
⌧µ
µ

∇
↵

u↵ − ⌫µ∇
µ

�µ
T
� ≥ 0 . (A.36)

We now choose the form of the dissipative parts in order to satisfy this inequality.
We obtain [LL87]: �����������

⇡µ⌫ = ⌘∇�µu⌫� ,
1

3

⌧µ
µ

= ⇣∇
↵

u↵ ,

⌫
µ

= − �nT
w

�2 ∇
µ

� µ
T

� ,

(A.37)
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as can the pressure scalar

P = −1
3
�µ⌫T

µ⌫

. (A.7)

In the absence of external currents the energy-momentum tensor is conserved:

@
µ

Tµ⌫ = 0 . (A.8)

Eq. (A.8) contains four equations. Contracting this set of equations with u
⌫

and �↵

⌫

we obtain respectively

D✏ +w∇µu
µ

= 0 , (A.9)

wDu↵ −∇↵P = 0 , (A.10)

where we have defined D ≡ uµ@
µ

and ∇↵ ≡ �↵µ@
µ

, in such a way that the space-time
derivative is separated into a time-like and space-like components

@µ = uµD +∇µ . (A.11)

Note that with these definitions @µu
µ

= ∇µu
µ

and u
µ

∇µ = 0.
Eq. (A.9) corresponds to the relativistic version of the “equation of energy” and

Eq. (A.10) to the relativistic generalization of Euler’s equation.
If the system presents a conserved particle number we can also define a four-particle

current
nµ = nuµ , (A.12)

whose first component gives the particle density n = uµn
µ

. This vector is also conserved:

@
µ

nµ = 0 , (A.13)

that can be written as
Dn + n∇µu

µ

= 0 , (A.14)

that is the continuity equation for an ideal fluid.

A.2 Viscous hydrodynamics

To take into account the dissipative corrections in the hydrodynamics, extra terms
should appear in the expressions of the energy-momentum tensor Tµ⌫ and the particle
four-flow nµ [LL87]:

Tµ⌫ = wuµu⌫ − P⌘µ⌫ + ⌧µ⌫ , (A.15)

nµ = nuµ + ⌫µ . (A.16)

The form of these dissipative parts depends on the choice we make of the reference
frame (see disscusion in Sec. 2.4). We will use the Landau-Lifshitz frame defined by the
conditions that the momentum density should vanish in the local rest reference frame.

T i0 = wuiu0 + ⌧ i0 = 0 if u
i

= 0→ ⌧ i0 = 0 . (A.17)

Navier-Stokes 
    Equations 

Viscous Hydrodynamics and transport coefficients: 
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� µ
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� ,
(A.38)

where ⌘, ⇣ and  should be non-negative coe�cients, called shear viscosity, bulk or
volume viscosity and thermal or heat conductivity, respectively. The factor (nT �w)2
in the definition of the thermal conductivity is needed if one wants to match that
expression with the relativistic Fourier’s law. We have detailed this step in Sec. 5.1.1.
Note, that from the explicit form of the dissipative terms in (A.38) it is evident that
the conditions (A.22) and (A.23) are fullfilled.

A.3 Microscopic relations

It is essential to derive the equations that relate the microscopical properties of the
particles and the macroscopic quantities that characterize the fluid. These equations
are obtained by using the one-particle distribution function f

p

(t,x). For example, the
particle four-flow, noting that uµ = pµ�E

p

:

nµ(t,x) = g� d3p
pµ(2⇡)3E

p

f
p

(t,x) , (A.39)

where E
p

is just the on-shell energy of the particle E
p

= p
0

= �m2 + p2. The energy
momentum tensor reads:

Tµ⌫(t,x) = g� d3p
pµp⌫(2⇡)3E

p

f
p

(t,x) . (A.40)

If the system is only slightly out of equilibrium, the one-particle distribution func-
tion can be expressed as the equilibrium distribution function plus a deviation from
equilibrium. As in the case of first order Chapman-Enskog expansion

f
p

(t,x) = n
p

(t,x) + f (1)
p

(t,x) , (A.41)

where the equilibrium distribution function for a Bose-Einstein gas reads (in the local
rest reference frame)

n
p

(t,x) = 1

e�(Ep

−µ) − 1 . (A.42)

With the help of this factorization the particle four-flow can be separated into an
equilibrium and a dissipative part:

nuµ(t,x) = g� d3p
pµ(2⇡)3E

p

n
p

(t,x) (A.43)

and

⌫µ(t,x) = g� d3p
pµ(2⇡)3E

p

f (1)
p

(t,x) . (A.44)
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If the system is only slightly out of equilibrium, the one-particle distribution func-
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f
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where the equilibrium distribution function for a Bose-Einstein gas reads (in the local
rest reference frame)
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With the help of this factorization the particle four-flow can be separated into an
equilibrium and a dissipative part:
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where ⌘, ⇣ and  should be non-negative coe�cients, called shear viscosity, bulk or
volume viscosity and thermal or heat conductivity, respectively. The factor (nT �w)2
in the definition of the thermal conductivity is needed if one wants to match that
expression with the relativistic Fourier’s law. We have detailed this step in Sec. 5.1.1.
Note, that from the explicit form of the dissipative terms in (A.38) it is evident that
the conditions (A.22) and (A.23) are fullfilled.

A.3 Microscopic relations

It is essential to derive the equations that relate the microscopical properties of the
particles and the macroscopic quantities that characterize the fluid. These equations
are obtained by using the one-particle distribution function f
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An analogous factorization can be made for the energy-momentum tensor. The ideal
part reads:

Tµ⌫

0

(t,x) = g� d3p
pµp⌫(2⇡)3E

p

n
p

(t,x) (A.45)

and the stress-energy tensor reads

⌧µ⌫(t,x) = g� d3p
pµp⌫(2⇡)3E

p

f (1)
p

(t,x) . (A.46)

These expressions in terms of the moments of the one-particle distribution function
can be generalized to an arbitrary rank. We will describe some properties of these
distribution moments in Appendix C.

An important remark is that the particle density out of equilibrium n ≡ u
µ

nµ is
actually the same as in equilibrium due to the frame choice

u
µ

⌫µ = u
µ

�µ

⌫

n⌫ = 0 . (A.47)

To be consistent one must ensure that in the microscopical relations the particle
density and the energy density must be the same as in equilibrium and therefore it
must satisfy the conditions of fit

⌫0(t,x) = g(2⇡)3 � d3p f (1)
p

(t,x) = 0 , (A.48)
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and
⌧0i(t,x) = g(2⇡)3 � d3p p
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(t,x) = 0 . (A.50)
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34 BUU Equation

The classical kinetic equation is called the Boltzmann equation and is known since L.
Boltzmann derived it in 1872 for a gas of classical particles. The collision operator of the
Boltzmann equation in the right-hand side of (2.9) reads explicitly [LLP81,GvLvW80,
Lib03]

C[f
1

, f
2

] = 1(2⇡)3 � d⌦dk
2

v
rel

d�
12

d⌦
[f

3

f
p

− f
1

f
2

] , (2.10)

where v
rel

is the relative velocity between the incoming particles, and d�12
d⌦

the di↵er-
ential cross section of the process. The existence of an equilibrium solution to this
equation was proven by Boltzmann in the form of the H−theorem.

The local H-theorem follows from that the entropy production at any time-space
point is never negative. The entropy production is only vanishing when the solution
of the kinetic equation is the local equilibrium distribution function or equilibrium
Maxwellian:

f
p

(t,x) = n
p

(t,x) ≡ 1

e
p

↵

u

↵

(t,x)−µ(t,x)
T (t,x)

, (2.11)

that satisfies the detailed balance equation
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(t,x)n
p

(t,x) . (2.12)

2.2.1 Wigner function

So far, the discussion has been purely classical. In quantum theory an analogous
derivation can be made, using quantum-mechanical averages instead of (2.4). The
analogue to the one-particle distribution function is called Wigner function [Wig32]
and it formally coincides with the classical distribution function. Moreover, a global
factor due to the quantum mechanical formulation appears in this function:

fC

p

(t, x)→ fQ

p

(t, x) g(2⇡�h)3 , (2.13)

where g accounts for the quantum degeneracy of the particle (g=2 for electrons due to
spin, g=3 for pions due to isospin or g = 2 for photons due to the polarization states)
and the factor 1�(2⇡�h)3 comes from the fact that dxdp�h3 is the number of quantum
states in the infinitesimal phase-space volume. Additionally, the collision operator is
not written in terms of the cross section but in terms of the scattering matrix elements.

When the Bose-Einstein must be applied (as is the case for pion at moderate temper-
atures) the kinetic equation is called the Boltzmann-Uehling-Uhlenbeck (BUU) equa-
tion. It contains some extra factors that accounts for the Bose-Einstein nature of the
particles and that produce an enhancement of the phase space in the available states.
To be consistent with our later references we will focus on the BUU equation for f

p

:

df
p
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= C[f
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] , (2.14)

where the collision operator of the BUU equation reads explicitly
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where g
3

is the degeneracy of the particle 3 and 1+ �
3,p

factor accounts for the possible
undistinguishable particles in the final state. The scattering measure is
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The local equilibrium distribution function is the Bose-Einstein function:

f
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(t,x) ≡ 1
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This function satisfies the detailed balance condition as well:
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In the following, we will denote as x the space-time four-vector (t,x) on which the
hydrodynamic fields and distribution functions depend.

2.3 Chapman-Enskog expansion

The so-called Chapman-Enskog expansion is one of the several classical methods to
obtain an approximate solution of the BUU equation.

In addition to the three length scales defined in Sec. 2.2 one can introduce a char-
acteristic hydrodynamic length h which is the typical size of the inhomogeneities of
the system [GvLvW80], [GS03]. The separation of scales are the following: A particle
su↵ers from a collision with another in a charateristic length being the range of inter-
action, R. After that, the particle moves freely a distance of the order of �

mfp

until it
encounters another particle and collides again. Inside h, the particle su↵ers from many
collisions. Due to these scatterings the distribution function becomes close to the local
equilibrium one. This local equilibrium state is characterized by µ, u and T that vary
from one region to another. In a larger time, the particle has travelled distances greater
than h and the di↵erences in the three hydrodynamical fields smooth across the whole
system. The gas reaches a state of global equilibrium defined by µ, u and T which do
not depend on x.

We can summarize the hierarchy of scales as

L� h� �
mfp

� R , (2.19)

where L is the typical size of the system. In terms of characteristic times, one can
divide the previous inequalities by the thermal velocity v ∼�T �m.

L�v � ⌧
h

� ⌧
mft

� ⌧
R

, (2.20)

where ⌧
h

= h�v is the characteristic time of travel through the inhomogeneities of the
system, ⌧

mft

is the mean free time, and ⌧
R

= R�v is the duration of a collision.
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Figure B.1: Results for the pion-pion phase-shifts obtained from the perturbative
SU(2) ChPT amplitudes (dashed line) and from those obtained using the inverse am-
plitude method (solid line). We plot the three relevant isospin-spin channels at low
energy. Data points are obtained from [P+73], [EM74] and [L+74].

 ChPT plus the IAM method fit very well pion scattering at the required energies 



50 ⌘ and KSS Coe�cient

T (MeV)
40 60 80 100 120 140 160 180 200

) 
-2

 (
G

e
V

 f
m

η

0

0.05

0.1

0.15

0.2

0.25

davmu100.pranocut

 = -100 MeVµ

 = -50 MeVµ

 = 0 MeVµ

 = 50 MeVµ

 = 100 MeVµ

T (MeV)
40 60 80 100 120 140 160 180 200

) 
-2

 (
G

e
V

 f
m

η

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

1ordre.out

 = -100 MeVµ

 = -50 MeVµ

 = 0 MeVµ

 = 50 MeVµ

 = 100 MeVµ

Figure 3.3: Top panel: Shear viscosity of a pion gas at several chemical potentials
and fugacities with the phenomenological phase-shifts of [PPVW93]. Bottom panel:
Results for the shear viscosity of [Dav96]. Data kindly provided by D. Davesne.

Perhaps the best known of these is the Reynolds number,

Re = mnLV

⌘
, (3.36)

that quotients the mass density (mn), characteristic fluid size and velocity, by the
shear viscosity. High values of this ratio (low viscosities) imply turbulent, unstable
flows, whereas small values (large viscosities) allow laminar, stationary flows.

The definition of the Reynolds number includes the inverse of the kinematic viscosity
⌫ = ⌘�mn. The kinematic viscosity is used for measuring dissipation in a nonrelativistic
system [LL87]. However, in relativistic theory the presence of the particle number
is problematic, because this number is usually not conserved. The generalization of
the Reynolds number for relativistic theories is to replace the mass density by the
relativistic enthalpy density w = ✏ + P :

Re = (✏ + P )LV
⌘

(3.37)

and the kinematic viscosity is substituted by ⌘�(✏ + P ) where the denominator can be
substituted by Ts when the chemical potentials are set to zero.

One can obtain the linearized equations of motion by expanding the Navier-Stokes
equations (A.25), (A.26) and the continuity equation (A.24) (up to first order when
a small perturbation) around the equilibrium values of the particle density n

0

+ �n,
velocity �u

i

and temperature T
0

+ �T . Taking Fourier transform one can obtain a
linear system that couples all the perturbations. This linear system is charaterized by
the “hydrodynamical matrix”. Diagonalizing this matrix one can obtain the form of
the dispersion relations ! = !(k). In the case of no conserved charge (µ

i

= 0), four
dispersion relations are obtained [ST09], [DLER08], a pair of tranverse di↵usive modes

!(k) = −i ⌘

Ts
k2 (3.38)
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Figure 3.8: Shear viscosity of a pion gas with µ = 0 and for a SU(3) quark-gluon
plasma with two and three flavors in the high temperature limit.
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Figure 4.6: Comparison of our computation with the phase-shifts from [PPVW93] (top
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Data kindly provided by D. Davesne.
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Figure 4.7: Bulk viscosity of a pion gas in the inverse amplitude method and the high
temperature result of perturbative QCD for a quark-gluon plasma phase. In the lower
panel we normalize the bulk viscosity over the entropy density.
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Figure 3: Top plot: aggregated e↵ective number of relativistic
degrees of freedom gs as a function of � = 1/T from numer-
ical calculation. Bottom plot: e↵ective number of degrees of
freedom for pions (solid line, blue online), photons (horizon-
tal solid line, black online), electrons (dotted horizontal line,
green online) and muons (dashed line, red online). Note that
at the highest part of the temperature interval, pions provide
a larger contribution to the entropy density than photons,
though leptons are the largest carriers of entropy.

ature and entropy density

T (r, t) = Tback(t) + �T (r, t) ,

s(r, t) = sback(t) + �s(r, t) . (11)

For the total entropy S we have

S = Sback + �S . (12)

Of course, in local equilibrium entropy is conserved as per
Eq. 9, �Sback = 0, so that entropy production is dS =
d(�S). Setting as simplest initial condition a bubble of
higher T than the surroundings, the temperature profile
of such bulb will evolve according to the heat equation.
Then,

� (�T (r, t)) =
(T )

cp(T )

@ (�T (r, t))

@t
. (13)

with (T ) the heat conductivity. Here the constant-
pressure specific heat cp is defined as the derivative of
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Figure 4: Dotted blue online: Thermal conductivity  as func-
tion of temperature at zero chemical potential from solving
the Boltzmann equation. Solid (red online): simple interpo-
lating function employed in the heat equation solver.

the background entropy (neglecting the newly produced
one) with respect to temperature at constant P :

cp(T ) =
@sback(T )

@T

�����
P

. (14)

Since we already calculated the contribution of pions to
the entropy density s⇡back we can immediately compute
the partial specific heat of the pion gas (we will further
drop the superindex ⇡ in this section, as all quantities are
refered to the pion gas alone). The other non-trivial func-
tion is (T ), the thermal conductivity, which depends on
the temperature alone and is known from recent and ear-
lier studies. The numeric data [4] from a variational so-
lution of Boltzmann’s equation following the Chapman-
Enskog expansion is shown in figure 4. Since cp(T ) and
(T ) are nontrivial functions of the temperature, the heat
equation does not admit an immediate analytical solu-
tion, so we numerically solve it by brute force with the
simplest parabolic solver for a partial di↵erential equa-
tion based on the finite-di↵erence method in space and
the Euler method in time. Thus, in figure 4 we also show
a simple interpolating function for the conductivity in
the temperature interval of interest that we employ to
speed up the computer code.
The valley in the conductivity at mid-temperatures oc-

curs because of the m⇡ ' f⇡ scales; the dropping low-
temperature behavior can be obtained from the ⇡⇡ scat-
tering length and non-relativistic kinetic theory, and at
high-T dimensional analysis dictates  / T 2 as visible.
The detailed calculation with the full machinery of phase
shifts, unitarity, chiral perturbation theory, etc. has been
reported elsewhere [4].
The numeric solution of Eq. (13), �T (r, t), is shown

in figure 5 with an initial condition that has a spherical
profile Gaussian in the radius,
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� r2

2R2 . (15)

Heat conductivity 

 
 

4

Figure 3: Top plot: aggregated e↵ective number of relativistic
degrees of freedom gs as a function of � = 1/T from numer-
ical calculation. Bottom plot: e↵ective number of degrees of
freedom for pions (solid line, blue online), photons (horizon-
tal solid line, black online), electrons (dotted horizontal line,
green online) and muons (dashed line, red online). Note that
at the highest part of the temperature interval, pions provide
a larger contribution to the entropy density than photons,
though leptons are the largest carriers of entropy.

ature and entropy density

T (r, t) = Tback(t) + �T (r, t) ,

s(r, t) = sback(t) + �s(r, t) . (11)

For the total entropy S we have

S = Sback + �S . (12)

Of course, in local equilibrium entropy is conserved as per
Eq. 9, �Sback = 0, so that entropy production is dS =
d(�S). Setting as simplest initial condition a bubble of
higher T than the surroundings, the temperature profile
of such bulb will evolve according to the heat equation.
Then,

� (�T (r, t)) =
(T )

cp(T )

@ (�T (r, t))

@t
. (13)

with (T ) the heat conductivity. Here the constant-
pressure specific heat cp is defined as the derivative of

Figure 4: Dotted blue online: Thermal conductivity  as func-
tion of temperature at zero chemical potential from solving
the Boltzmann equation. Solid (red online): simple interpo-
lating function employed in the heat equation solver.

the background entropy (neglecting the newly produced
one) with respect to temperature at constant P :

cp(T ) =
@sback(T )

@T

�����
P

. (14)

Since we already calculated the contribution of pions to
the entropy density s⇡back we can immediately compute
the partial specific heat of the pion gas (we will further
drop the superindex ⇡ in this section, as all quantities are
refered to the pion gas alone). The other non-trivial func-
tion is (T ), the thermal conductivity, which depends on
the temperature alone and is known from recent and ear-
lier studies. The numeric data [4] from a variational so-
lution of Boltzmann’s equation following the Chapman-
Enskog expansion is shown in figure 4. Since cp(T ) and
(T ) are nontrivial functions of the temperature, the heat
equation does not admit an immediate analytical solu-
tion, so we numerically solve it by brute force with the
simplest parabolic solver for a partial di↵erential equa-
tion based on the finite-di↵erence method in space and
the Euler method in time. Thus, in figure 4 we also show
a simple interpolating function for the conductivity in
the temperature interval of interest that we employ to
speed up the computer code.
The valley in the conductivity at mid-temperatures oc-

curs because of the m⇡ ' f⇡ scales; the dropping low-
temperature behavior can be obtained from the ⇡⇡ scat-
tering length and non-relativistic kinetic theory, and at
high-T dimensional analysis dictates  / T 2 as visible.
The detailed calculation with the full machinery of phase
shifts, unitarity, chiral perturbation theory, etc. has been
reported elsewhere [4].
The numeric solution of Eq. (13), �T (r, t), is shown

in figure 5 with an initial condition that has a spherical
profile Gaussian in the radius,

�T (r, 0) = �T0 e
� r2

2R2 . (15)



6

where U is the internal energy of the inhomogeneity. In-
tegrating over the surface and in time, and using Gauss’s
theorem, we find the entropy produced in the process of
relaxation of the inhomogeneity:

�ST =

Z

@V
d⌃ dt

je · n
T

=

Z

V
dV dtr ·

✓
je
T

◆
(22)

Applying Fourier’s law in Eq. (19) we find:

�ST =
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T
(T )rT

◆
. (23)

Applying now Leibnitz’s rule we get

�ST =

Z
dV dt

(T )

T 2

�
|r�T |2 � T��T

�
,

(24)

which is positive, �ST � 0, since �T = �(�T )  0
(remember that Tback was position-independent).

Comparing with Eq. (17) we find the production of
entropy and the divergence of its flow

�s(r, t) =
(T )

T 2
|r�T (r, t)|2 , (25)

�r · js(r, t) =
(T )

T
��T (r, t) . (26)

The internal entropy produced in dissipating an inho-
mogeneity is an integrated entropy �SV , obtained from
the entropy-density production �s after integrating over
the time and space when and where the inhomogeneity
was relevant,

�SV (�T0) =

Z
dV dt�s(r, t) . (27)

To ascertain the size of this produced entropy and assess
its relative importance, it is natural to quotient it by the
background entropy in the same volume, Sback, that for
a spherical disturbance integrating up to the radius R
(defined above in Eq. (15) as the characteristic Gaussian
fall-o↵ radius) is

Sback(R, Tback) '
4

3
⇡
⇣p

2R
⌘3

sback(Tback) . (28)

We now have all necessary equations and can proceed
to the numerical computation.

IV. NUMERICAL RESULTS

A. One inhomogeneity only

To check the computer codes and understand the typ-
ical order of magnitude, let us consider a time period

that is short enough so that the background tempera-
ture does not vary appreciably and can be considered
constant (T = T0). That means in particular that  and
cp also remain constant (in fact the inhomogeneity has
not fully spread in this case, but we can deal with this
numerically later). Then we can make the replacement

�s '
(T0)

T 2
0 R4

�T 2
0 r

2e�
r2

2R2 , (29)

wherein T0 = Tback + �T0. For a temperature interval
from 175 MeV to 170 MeV (t 2 [0 � 1013] MeV�1), we
keep (T )/T 2

0 unchanged and of order one, thus, �s /
�T 2

0
R4 r2e�

r2

2R2 . Carrying out the integral over space, one
gets

Z
dV �s / �T 2

0 R . (30)

To put some numbers, take an inhomogeneity of size
108 fm at �T0 ⇡ 10MeV; one has then

R
dV �s ' 107

MeV. This element multiplied by a time interval �t ⇡
1013 MeV�1 gives an integrated entropy of order 1020.
Nevertheless, since at 175 MeV sback is numerically of
order 106 MeV, the background entropy Sback given by
Eq. (28) is ⇡ 1023, so the ratio �SV /Sback is ⇡ 10�3.
Inasmuch as we are considering just a tiny time interval
in which the bubble did not have enough time to evolve,
the value of the entropy produced over the entire life of
the bubble must be larger than this figure, and thus not
negligible at all (but requires a numeric computation).
Now, by solving the heat equation for T (r, t) in

Eq. (13), we can compute the integral in Eq. (27) with
Eq. (25) and thus numerically obtain �SV .

Table II: Values of �SV /Sback (in units of 10�3) for di↵erent
temperatures and, for each column, a value of the inhomo-
geneity size given by R

1

= 2.5 ⇥ 109 , R
2

= 2.5 ⇥ 107 , R
3

=
2.5 ⇥ 105 , R

4

= 2.5 ⇥ 102 in fm units. Temperatures are in
MeV.

Tback �T
0

R
1

R
2

R
3

R
4

138

35 32.6 35.1 35.1 46.1
30 24.0 25.8 25.8 35.3
25 16.6 17.9 17.9 28.5
20 10.6 11.5 11.5 22.4
15 5.98 6.44 6.44 17.7
10 2.66 2.86 2.86 19.8
5 0.7 0.7 0.7 11.4

100

50 196.0 208.4 208.4 234.4
45 158.4 168.3 168.3 195.5
40 124.7 132.4 132.4 162.0
35 95.1 100.9 100.9 132.4
30 69.6 73.7 73.7 105.5
25 48.0 50.9 50.9 83.4
20 30.5 32.3 32.3 67.3
15 17.0 18.0 18.0 53.5
10 7.5 7.9 7.9 42.4
5 1.9 2.0 2.0 49.7
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Figure 5: Temperature profile T (r, t) of an inhomogeneity of
initial size R = 2.5 ⇥ 105 fm, as a function of the radius r
for increasing times. Top, solid black line: initial condition
T (0, 0) = 170MeV. Brown solid line, much flatter of the
bottom: T (r, tr), tr ⇡ 1MeV�1 (⇡ 10�22 s). Other lines illus-
trate the time evolution of the inhomogeneity at intermediate
times.

Here �T0 is the initial central temperature of the inhomo-
geneity over that of the background, and R is the typical
radius.

There are several considerations to choose the size of
the inhomogeneity. At the largest scale, we can ask our-
selves what is the largest possible radius that will ho-
mogenize during the pion gas lifetime. We must also
take the size of the bulb small enough so as to respect
CMB constraints. As can be glanced back in figure 1,
the scale factor can be nicely fitted by a(t) /

p
t. Thus,

the Hubble horizon reached during the pion gas is among
10�3�10�2 peV�1. This means that no homogenization
can take place over distances larger than about a light
second (1�10)⇥10�3 peV�1, or squaring and inverting,
R must be no larger than ⇡ 1016� 1017fm. This guaran-
tees that the thermal flattening of the bulb never violates
causality. Further, since the first order heat equation
is not relativistically causal and we have not examined
the 2nd order formalism, we have to restrict ourselves to
even significantly smaller spheres. A further considera-
tion is that if the inhomogeneity is too large, its relax-
ation time will be so great that when it reaches thermal
equilibrium, there are no pions left (they are abundant at
Tback ⇡ 175 � 100 MeV). For this reason (exclusively of
simplicity), we will restrict the study to inhomogeneities
no bigger than R ⇡ 109 fm. These are small enough not
to perturb the metric significantly, so we can treat them
simply as Newtonian perturbations. Finally, when we
consider the smallest radii of the inhomogeneity, in the
typical nuclear scale or somewhat more, RHIC guidance
is available.

B. Entropy increase in one inhomogeneity

The variation of the entropy of our inhomogeneity of
volume V during the relaxation process can be written
as:

dST

dt
=

dSV̄

dt
+

dSV

dt
, (16)

where ST denotes the total entropy, dSV̄ represents the
entropy exchanged with the rest of the universe and dSV

the inner entropy production. The exchanged entropy
dSV̄ can be obtained by means of an integral of the in-
comming entropy current over the surface of the inhomo-
geneity @V . We will consider the exchange as positive if
entropy is supplied to the subsystem by the surroundings.
The entropy current will be denoted by js. Concern-
ing the internal entropy production dSV we introduce
the rate of entropy production �s per unit volume and
unit time inside the system. In terms of these quantities,
dSV̄ /dt and dSV /dt may be written as

dSV̄

dt
= �

Z

@V
js · n d⌃ ,

dSV

dt
=

Z

V
�s dV . (17)

Expressing Eq. (16) in terms of the entropy current
and density we have:

dST

dt
=

d

dt

Z

V
sT dV = �

Z

@V
d⌃ js ·n+

Z

V
dV �s (18)

and use of Gauss’s theorem yields the equation

dsT
dt

= �r · js + �s .

For small flows, linear laws hold, such as the Fourier law
for the heat flux:

je = �(T )rT ; (19)

where je is the heat current vector. Other examples of
linear laws are Fick’s law for a flavor i concentration flux,
ji = �Dirni, withDi being a di↵usion coe�cient for the
particle species i; or Ohm’s law for the electric current
density jQ = �r� with jQ being the electric current, �
the electric potential and  the electric conductivity. A
general form for the entropy production �s is

�s = je·r
✓
1

T

◆
�
X

i


ji ·r

⇣µi

T

⌘
+

Ak vk
T

�
+

I · jQ
T

· · · ,

(20)
with Ak, vk the activities and the stoichiometric coe�-
cients for the ith species involved in inelastic particle re-
actions. In the following we will consider the entropy
production �s for the thermal flow alone (first term).
Basic thermodynamics yields

dU = T dST = (je · n) d⌃ dt (21)
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with Ak, vk the activities and the stoichiometric coe�-
cients for the ith species involved in inelastic particle re-
actions. In the following we will consider the entropy
production �s for the thermal flow alone (first term).
Basic thermodynamics yields

dU = T dST = (je · n) d⌃ dt (21)
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selves what is the largest possible radius that will ho-
mogenize during the pion gas lifetime. We must also
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where U is the internal energy of the inhomogeneity. In-
tegrating over the surface and in time, and using Gauss’s
theorem, we find the entropy produced in the process of
relaxation of the inhomogeneity:

�ST =

Z

@V
d⌃ dt

je · n
T

=

Z

V
dV dtr ·

✓
je
T

◆
(22)

Applying Fourier’s law in Eq. (19) we find:

�ST =

Z
dV dtr ·

✓
� 1

T
(T )rT

◆
. (23)

Applying now Leibnitz’s rule we get

�ST =

Z
dV dt

(T )

T 2

�
|r�T |2 � T��T

�
,

(24)

which is positive, �ST � 0, since �T = �(�T )  0
(remember that Tback was position-independent).

Comparing with Eq. (17) we find the production of
entropy and the divergence of its flow

�s(r, t) =
(T )

T 2
|r�T (r, t)|2 , (25)

�r · js(r, t) =
(T )

T
��T (r, t) . (26)

The internal entropy produced in dissipating an inho-
mogeneity is an integrated entropy �SV , obtained from
the entropy-density production �s after integrating over
the time and space when and where the inhomogeneity
was relevant,

�SV (�T0) =

Z
dV dt�s(r, t) . (27)

To ascertain the size of this produced entropy and assess
its relative importance, it is natural to quotient it by the
background entropy in the same volume, Sback, that for
a spherical disturbance integrating up to the radius R
(defined above in Eq. (15) as the characteristic Gaussian
fall-o↵ radius) is

Sback(R, Tback) '
4

3
⇡
⇣p

2R
⌘3

sback(Tback) . (28)

We now have all necessary equations and can proceed
to the numerical computation.

IV. NUMERICAL RESULTS

A. One inhomogeneity only

To check the computer codes and understand the typ-
ical order of magnitude, let us consider a time period

that is short enough so that the background tempera-
ture does not vary appreciably and can be considered
constant (T = T0). That means in particular that  and
cp also remain constant (in fact the inhomogeneity has
not fully spread in this case, but we can deal with this
numerically later). Then we can make the replacement

�s '
(T0)

T 2
0 R4

�T 2
0 r

2e�
r2

2R2 , (29)

wherein T0 = Tback + �T0. For a temperature interval
from 175 MeV to 170 MeV (t 2 [0 � 1013] MeV�1), we
keep (T )/T 2

0 unchanged and of order one, thus, �s /
�T 2

0
R4 r2e�

r2

2R2 . Carrying out the integral over space, one
gets

Z
dV �s / �T 2

0 R . (30)

To put some numbers, take an inhomogeneity of size
108 fm at �T0 ⇡ 10MeV; one has then

R
dV �s ' 107

MeV. This element multiplied by a time interval �t ⇡
1013 MeV�1 gives an integrated entropy of order 1020.
Nevertheless, since at 175 MeV sback is numerically of
order 106 MeV, the background entropy Sback given by
Eq. (28) is ⇡ 1023, so the ratio �SV /Sback is ⇡ 10�3.
Inasmuch as we are considering just a tiny time interval
in which the bubble did not have enough time to evolve,
the value of the entropy produced over the entire life of
the bubble must be larger than this figure, and thus not
negligible at all (but requires a numeric computation).
Now, by solving the heat equation for T (r, t) in

Eq. (13), we can compute the integral in Eq. (27) with
Eq. (25) and thus numerically obtain �SV .

Table II: Values of �SV /Sback (in units of 10�3) for di↵erent
temperatures and, for each column, a value of the inhomo-
geneity size given by R

1

= 2.5 ⇥ 109 , R
2

= 2.5 ⇥ 107 , R
3

=
2.5 ⇥ 105 , R

4

= 2.5 ⇥ 102 in fm units. Temperatures are in
MeV.

Tback �T
0

R
1

R
2

R
3

R
4

138

35 32.6 35.1 35.1 46.1
30 24.0 25.8 25.8 35.3
25 16.6 17.9 17.9 28.5
20 10.6 11.5 11.5 22.4
15 5.98 6.44 6.44 17.7
10 2.66 2.86 2.86 19.8
5 0.7 0.7 0.7 11.4

100

50 196.0 208.4 208.4 234.4
45 158.4 168.3 168.3 195.5
40 124.7 132.4 132.4 162.0
35 95.1 100.9 100.9 132.4
30 69.6 73.7 73.7 105.5
25 48.0 50.9 50.9 83.4
20 30.5 32.3 32.3 67.3
15 17.0 18.0 18.0 53.5
10 7.5 7.9 7.9 42.4
5 1.9 2.0 2.0 49.7
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Figure 5: Temperature profile T (r, t) of an inhomogeneity of
initial size R = 2.5 ⇥ 105 fm, as a function of the radius r
for increasing times. Top, solid black line: initial condition
T (0, 0) = 170MeV. Brown solid line, much flatter of the
bottom: T (r, tr), tr ⇡ 1MeV�1 (⇡ 10�22 s). Other lines illus-
trate the time evolution of the inhomogeneity at intermediate
times.

Here �T0 is the initial central temperature of the inhomo-
geneity over that of the background, and R is the typical
radius.

There are several considerations to choose the size of
the inhomogeneity. At the largest scale, we can ask our-
selves what is the largest possible radius that will ho-
mogenize during the pion gas lifetime. We must also
take the size of the bulb small enough so as to respect
CMB constraints. As can be glanced back in figure 1,
the scale factor can be nicely fitted by a(t) /

p
t. Thus,

the Hubble horizon reached during the pion gas is among
10�3�10�2 peV�1. This means that no homogenization
can take place over distances larger than about a light
second (1�10)⇥10�3 peV�1, or squaring and inverting,
R must be no larger than ⇡ 1016� 1017fm. This guaran-
tees that the thermal flattening of the bulb never violates
causality. Further, since the first order heat equation
is not relativistically causal and we have not examined
the 2nd order formalism, we have to restrict ourselves to
even significantly smaller spheres. A further considera-
tion is that if the inhomogeneity is too large, its relax-
ation time will be so great that when it reaches thermal
equilibrium, there are no pions left (they are abundant at
Tback ⇡ 175 � 100 MeV). For this reason (exclusively of
simplicity), we will restrict the study to inhomogeneities
no bigger than R ⇡ 109 fm. These are small enough not
to perturb the metric significantly, so we can treat them
simply as Newtonian perturbations. Finally, when we
consider the smallest radii of the inhomogeneity, in the
typical nuclear scale or somewhat more, RHIC guidance
is available.

B. Entropy increase in one inhomogeneity

The variation of the entropy of our inhomogeneity of
volume V during the relaxation process can be written
as:
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where ST denotes the total entropy, dSV̄ represents the
entropy exchanged with the rest of the universe and dSV

the inner entropy production. The exchanged entropy
dSV̄ can be obtained by means of an integral of the in-
comming entropy current over the surface of the inhomo-
geneity @V . We will consider the exchange as positive if
entropy is supplied to the subsystem by the surroundings.
The entropy current will be denoted by js. Concern-
ing the internal entropy production dSV we introduce
the rate of entropy production �s per unit volume and
unit time inside the system. In terms of these quantities,
dSV̄ /dt and dSV /dt may be written as

dSV̄

dt
= �

Z

@V
js · n d⌃ ,

dSV

dt
=

Z

V
�s dV . (17)

Expressing Eq. (16) in terms of the entropy current
and density we have:

dST

dt
=

d

dt

Z

V
sT dV = �

Z

@V
d⌃ js ·n+

Z

V
dV �s (18)

and use of Gauss’s theorem yields the equation

dsT
dt

= �r · js + �s .

For small flows, linear laws hold, such as the Fourier law
for the heat flux:

je = �(T )rT ; (19)

where je is the heat current vector. Other examples of
linear laws are Fick’s law for a flavor i concentration flux,
ji = �Dirni, withDi being a di↵usion coe�cient for the
particle species i; or Ohm’s law for the electric current
density jQ = �r� with jQ being the electric current, �
the electric potential and  the electric conductivity. A
general form for the entropy production �s is

�s = je·r
✓
1

T

◆
�
X

i


ji ·r

⇣µi

T

⌘
+

Ak vk
T

�
+

I · jQ
T

· · · ,

(20)
with Ak, vk the activities and the stoichiometric coe�-
cients for the ith species involved in inelastic particle re-
actions. In the following we will consider the entropy
production �s for the thermal flow alone (first term).
Basic thermodynamics yields

dU = T dST = (je · n) d⌃ dt (21)

6

where U is the internal energy of the inhomogeneity. In-
tegrating over the surface and in time, and using Gauss’s
theorem, we find the entropy produced in the process of
relaxation of the inhomogeneity:

�ST =

Z

@V
d⌃ dt

je · n
T

=

Z

V
dV dtr ·

✓
je
T

◆
(22)

Applying Fourier’s law in Eq. (19) we find:

�ST =

Z
dV dtr ·

✓
� 1

T
(T )rT

◆
. (23)

Applying now Leibnitz’s rule we get

�ST =

Z
dV dt

(T )

T 2

�
|r�T |2 � T��T

�
,

(24)

which is positive, �ST � 0, since �T = �(�T )  0
(remember that Tback was position-independent).

Comparing with Eq. (17) we find the production of
entropy and the divergence of its flow

�s(r, t) =
(T )

T 2
|r�T (r, t)|2 , (25)

�r · js(r, t) =
(T )

T
��T (r, t) . (26)

The internal entropy produced in dissipating an inho-
mogeneity is an integrated entropy �SV , obtained from
the entropy-density production �s after integrating over
the time and space when and where the inhomogeneity
was relevant,

�SV (�T0) =

Z
dV dt�s(r, t) . (27)

To ascertain the size of this produced entropy and assess
its relative importance, it is natural to quotient it by the
background entropy in the same volume, Sback, that for
a spherical disturbance integrating up to the radius R
(defined above in Eq. (15) as the characteristic Gaussian
fall-o↵ radius) is

Sback(R, Tback) '
4

3
⇡
⇣p

2R
⌘3

sback(Tback) . (28)

We now have all necessary equations and can proceed
to the numerical computation.

IV. NUMERICAL RESULTS

A. One inhomogeneity only

To check the computer codes and understand the typ-
ical order of magnitude, let us consider a time period

that is short enough so that the background tempera-
ture does not vary appreciably and can be considered
constant (T = T0). That means in particular that  and
cp also remain constant (in fact the inhomogeneity has
not fully spread in this case, but we can deal with this
numerically later). Then we can make the replacement

�s '
(T0)

T 2
0 R4

�T 2
0 r

2e�
r2

2R2 , (29)

wherein T0 = Tback + �T0. For a temperature interval
from 175 MeV to 170 MeV (t 2 [0 � 1013] MeV�1), we
keep (T )/T 2

0 unchanged and of order one, thus, �s /
�T 2

0
R4 r2e�

r2

2R2 . Carrying out the integral over space, one
gets

Z
dV �s / �T 2

0 R . (30)

To put some numbers, take an inhomogeneity of size
108 fm at �T0 ⇡ 10MeV; one has then

R
dV �s ' 107

MeV. This element multiplied by a time interval �t ⇡
1013 MeV�1 gives an integrated entropy of order 1020.
Nevertheless, since at 175 MeV sback is numerically of
order 106 MeV, the background entropy Sback given by
Eq. (28) is ⇡ 1023, so the ratio �SV /Sback is ⇡ 10�3.
Inasmuch as we are considering just a tiny time interval
in which the bubble did not have enough time to evolve,
the value of the entropy produced over the entire life of
the bubble must be larger than this figure, and thus not
negligible at all (but requires a numeric computation).
Now, by solving the heat equation for T (r, t) in

Eq. (13), we can compute the integral in Eq. (27) with
Eq. (25) and thus numerically obtain �SV .

Table II: Values of �SV /Sback (in units of 10�3) for di↵erent
temperatures and, for each column, a value of the inhomo-
geneity size given by R

1

= 2.5 ⇥ 109 , R
2

= 2.5 ⇥ 107 , R
3

=
2.5 ⇥ 105 , R

4

= 2.5 ⇥ 102 in fm units. Temperatures are in
MeV.

Tback �T
0

R
1

R
2

R
3

R
4

138

35 32.6 35.1 35.1 46.1
30 24.0 25.8 25.8 35.3
25 16.6 17.9 17.9 28.5
20 10.6 11.5 11.5 22.4
15 5.98 6.44 6.44 17.7
10 2.66 2.86 2.86 19.8
5 0.7 0.7 0.7 11.4

100

50 196.0 208.4 208.4 234.4
45 158.4 168.3 168.3 195.5
40 124.7 132.4 132.4 162.0
35 95.1 100.9 100.9 132.4
30 69.6 73.7 73.7 105.5
25 48.0 50.9 50.9 83.4
20 30.5 32.3 32.3 67.3
15 17.0 18.0 18.0 53.5
10 7.5 7.9 7.9 42.4
5 1.9 2.0 2.0 49.7
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Figure 7: �SV /Sback as a function of R and �T
0

at di↵erent
Tback in the moment of the formation of the inhomogeneity.
From top to bottom the surfaces correspond to Tback = 138
MeV (green online) and Tback = 175 MeV (blue online).

Table II shows the numeric computation of �SV di-
vided by Sback for di↵erent choices of Tback and �T0 (ini-
tial, central intensity of the perturbation). In figure 6 we
plot the same quantity �SV /Sback against �T0 for di↵er-
ent initial sizes. As expected, the bigger the bulb is, the
more entropy it produces.

In figure 7 we simultaneously plot �SV /Sback against
the size R and intensity �T0 of the inhomogeneity. It is
interesting though expected to note that at lower back-
ground temperatures the integrated entropy becomes
larger for equal �T0. Mathematically this comes from
the term |rT |2 in Eq. (25), which increases as the Tback

decreases, giving rise to a larger entropy production.

B. Multiple inhomogeneities

In the early-universe hadronic gas there is no reason
to think that only one bubble of di↵erent temperature
would form (as opposed to say a nuclear collision which
is a system of very limited size). In the absence of data all
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Figure 8: Sketch of the inhomogeneities arrangement.

we can give is an upper bound to the entropy produced by
disposing as many inhomogeneities as possible (as long
as the background does not lose its meaning). We adopt
as an extreme limit the density of bubbles when their
Gaussian two-sigma walls touch. Thus, we will consider
for geometric simplicity
a cube in which a set of inhomogeneities will be ar-

ranged as in a simple centered cubic structure. The
typical size of each inhomogeneity will be ⇡ 2

p
2R of

diameter. We take as reasonable average separation be-
tween inhomogeneities, 4

p
2R. The edge of such cube has

a length of 2
p
2RN due to the presence of N inhomo-

geneities plus (N �1)4
p
2R due to the (N �1) spacings,

as we show in figure 8.

The background entropy S
(N)
back for N inhomogeneities

occupying a volume VC is then

S
(N)
back = Vcsback , (31)

with Vc = 2
p
2 [(N � 1)4R+ 2NR]3.

Next we need to model the intensity of each perturba-
tion, �T0. In a plasma this will be randomly distributed.
Conceivable noise models are white noise (all �T0 equally
likely) or Brownian noise (the distribution falls as 1/�T 2

0 ).
An interesting intermediate case that is ubiquitous in
physics is the so called 1/f noise [14] that distributes
the bubbles in proportion to 1/�T0. Both 1/f and 1/f2

noises obviously assign lower density to higher �T0 We
currently have no reason to prefer one or another distri-
bution, so we examine all three of them.
The noise function is in all three cases of the form

P (�T0) =
C

�T �
0

, (32)

wherein � = 0, 1, 2 for the white, 1/f and 1/f2 noises
respectively. The normalization constant C is determined
from the total number of inhomogeneities N in VC by

Z �Tb

�Ta

d(�T0)
C

�T �
0

= N , (33)

with �Ta , �Tb the lower and upper limits respectively
for the initial temperature of the inhomogeneity, i.e.,
�T0 2 [�Ta, �Tb]. Too high initial temperatures will in-
volve the quark and gluon plasma and are thus out of
our reach here, so �Tb ⇠ 50 MeV seems reasonable for
this exploration. As for the smallest �T0 taken, since we
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we can give is an upper bound to the entropy produced by
disposing as many inhomogeneities as possible (as long
as the background does not lose its meaning). We adopt
as an extreme limit the density of bubbles when their
Gaussian two-sigma walls touch. Thus, we will consider
for geometric simplicity
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a length of 2
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2RN due to the presence of N inhomo-
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2R due to the (N �1) spacings,

as we show in figure 8.

The background entropy S
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back for N inhomogeneities

occupying a volume VC is then
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(N)
back = Vcsback , (31)

with Vc = 2
p
2 [(N � 1)4R+ 2NR]3.

Next we need to model the intensity of each perturba-
tion, �T0. In a plasma this will be randomly distributed.
Conceivable noise models are white noise (all �T0 equally
likely) or Brownian noise (the distribution falls as 1/�T 2

0 ).
An interesting intermediate case that is ubiquitous in
physics is the so called 1/f noise [14] that distributes
the bubbles in proportion to 1/�T0. Both 1/f and 1/f2

noises obviously assign lower density to higher �T0 We
currently have no reason to prefer one or another distri-
bution, so we examine all three of them.
The noise function is in all three cases of the form

P (�T0) =
C
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, (32)

wherein � = 0, 1, 2 for the white, 1/f and 1/f2 noises
respectively. The normalization constant C is determined
from the total number of inhomogeneities N in VC by
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Table II shows the numeric computation of �SV di-
vided by Sback for di↵erent choices of Tback and �T0 (ini-
tial, central intensity of the perturbation). In figure 6 we
plot the same quantity �SV /Sback against �T0 for di↵er-
ent initial sizes. As expected, the bigger the bulb is, the
more entropy it produces.
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the size R and intensity �T0 of the inhomogeneity. It is
interesting though expected to note that at lower back-
ground temperatures the integrated entropy becomes
larger for equal �T0. Mathematically this comes from
the term |rT |2 in Eq. (25), which increases as the Tback

decreases, giving rise to a larger entropy production.
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In the early-universe hadronic gas there is no reason
to think that only one bubble of di↵erent temperature
would form (as opposed to say a nuclear collision which
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we can give is an upper bound to the entropy produced by
disposing as many inhomogeneities as possible (as long
as the background does not lose its meaning). We adopt
as an extreme limit the density of bubbles when their
Gaussian two-sigma walls touch. Thus, we will consider
for geometric simplicity
a cube in which a set of inhomogeneities will be ar-

ranged as in a simple centered cubic structure. The
typical size of each inhomogeneity will be ⇡ 2

p
2R of

diameter. We take as reasonable average separation be-
tween inhomogeneities, 4

p
2R. The edge of such cube has

a length of 2
p
2RN due to the presence of N inhomo-

geneities plus (N �1)4
p
2R due to the (N �1) spacings,

as we show in figure 8.

The background entropy S
(N)
back for N inhomogeneities

occupying a volume VC is then

S
(N)
back = Vcsback , (31)

with Vc = 2
p
2 [(N � 1)4R+ 2NR]3.

Next we need to model the intensity of each perturba-
tion, �T0. In a plasma this will be randomly distributed.
Conceivable noise models are white noise (all �T0 equally
likely) or Brownian noise (the distribution falls as 1/�T 2

0 ).
An interesting intermediate case that is ubiquitous in
physics is the so called 1/f noise [14] that distributes
the bubbles in proportion to 1/�T0. Both 1/f and 1/f2

noises obviously assign lower density to higher �T0 We
currently have no reason to prefer one or another distri-
bution, so we examine all three of them.
The noise function is in all three cases of the form

P (�T0) =
C

�T �
0

, (32)

wherein � = 0, 1, 2 for the white, 1/f and 1/f2 noises
respectively. The normalization constant C is determined
from the total number of inhomogeneities N in VC by
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with �Ta , �Tb the lower and upper limits respectively
for the initial temperature of the inhomogeneity, i.e.,
�T0 2 [�Ta, �Tb]. Too high initial temperatures will in-
volve the quark and gluon plasma and are thus out of
our reach here, so �Tb ⇠ 50 MeV seems reasonable for
this exploration. As for the smallest �T0 taken, since we
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we can give is an upper bound to the entropy produced by
disposing as many inhomogeneities as possible (as long
as the background does not lose its meaning). We adopt
as an extreme limit the density of bubbles when their
Gaussian two-sigma walls touch. Thus, we will consider
for geometric simplicity
a cube in which a set of inhomogeneities will be ar-

ranged as in a simple centered cubic structure. The
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2R. The edge of such cube has

a length of 2
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2R due to the (N �1) spacings,

as we show in figure 8.
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S
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From top to bottom the surfaces correspond to Tback = 138
MeV (green online) and Tback = 175 MeV (blue online).

Table II shows the numeric computation of �SV di-
vided by Sback for di↵erent choices of Tback and �T0 (ini-
tial, central intensity of the perturbation). In figure 6 we
plot the same quantity �SV /Sback against �T0 for di↵er-
ent initial sizes. As expected, the bigger the bulb is, the
more entropy it produces.

In figure 7 we simultaneously plot �SV /Sback against
the size R and intensity �T0 of the inhomogeneity. It is
interesting though expected to note that at lower back-
ground temperatures the integrated entropy becomes
larger for equal �T0. Mathematically this comes from
the term |rT |2 in Eq. (25), which increases as the Tback

decreases, giving rise to a larger entropy production.

B. Multiple inhomogeneities

In the early-universe hadronic gas there is no reason
to think that only one bubble of di↵erent temperature
would form (as opposed to say a nuclear collision which
is a system of very limited size). In the absence of data all
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we can give is an upper bound to the entropy produced by
disposing as many inhomogeneities as possible (as long
as the background does not lose its meaning). We adopt
as an extreme limit the density of bubbles when their
Gaussian two-sigma walls touch. Thus, we will consider
for geometric simplicity
a cube in which a set of inhomogeneities will be ar-

ranged as in a simple centered cubic structure. The
typical size of each inhomogeneity will be ⇡ 2

p
2R of

diameter. We take as reasonable average separation be-
tween inhomogeneities, 4

p
2R. The edge of such cube has

a length of 2
p
2RN due to the presence of N inhomo-

geneities plus (N �1)4
p
2R due to the (N �1) spacings,

as we show in figure 8.

The background entropy S
(N)
back for N inhomogeneities

occupying a volume VC is then

S
(N)
back = Vcsback , (31)

with Vc = 2
p
2 [(N � 1)4R+ 2NR]3.

Next we need to model the intensity of each perturba-
tion, �T0. In a plasma this will be randomly distributed.
Conceivable noise models are white noise (all �T0 equally
likely) or Brownian noise (the distribution falls as 1/�T 2

0 ).
An interesting intermediate case that is ubiquitous in
physics is the so called 1/f noise [14] that distributes
the bubbles in proportion to 1/�T0. Both 1/f and 1/f2

noises obviously assign lower density to higher �T0 We
currently have no reason to prefer one or another distri-
bution, so we examine all three of them.
The noise function is in all three cases of the form

P (�T0) =
C

�T �
0

, (32)

wherein � = 0, 1, 2 for the white, 1/f and 1/f2 noises
respectively. The normalization constant C is determined
from the total number of inhomogeneities N in VC by

Z �Tb

�Ta

d(�T0)
C

�T �
0

= N , (33)

with �Ta , �Tb the lower and upper limits respectively
for the initial temperature of the inhomogeneity, i.e.,
�T0 2 [�Ta, �Tb]. Too high initial temperatures will in-
volve the quark and gluon plasma and are thus out of
our reach here, so �Tb ⇠ 50 MeV seems reasonable for
this exploration. As for the smallest �T0 taken, since we
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After the QCD phase transition there was a small period of time where 

pions carried an important fraction of the entropy of the universe 

(more than photons!) 

That era lasted from T = 175 Mev to T = 80 MeV (t = 10-6 s to 5 X 10-5 s) 

In that period of time pions interactions dominated dissipative processes 

The physics of this era is well known but not very well developed 

As the density is relatively small kinetic theory can be applied 

It could be used to study entropy production by dissipation and to set 
bounds on the fluctuation spectrum at the end of the QCD phase transition 
to make them compatible with CMB 

More work is needed in that interesting direction 

 

 

Summary and open questions 
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The Inverse Amplitude Method 

Dobado and Peláez 

Quiral Perturbation Theory (Momentum and mass expansion) 
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The Inverse Amplitude Method 

  

  

Lowest order ChPT (Weinberg Theorems) 
is only valid at very low energies. 
 
However second order ChPT suplemented 
with Dispersion Relations  (the Inverse 
amplitude method) makes it possible a 
simultaneous description of ππ→ππ and 
πK→πK up to  800-1000  MeV including 
resonances 


