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In the History of the Universe it is possible to distinguish different
periods of time (epochs or eras) defined by important physical events:
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Early epoch:

From the Electroweak phase transitionto T=1TeVtoT=1 GeV (t = 1012 to 107 s)
After the Electroweak phase transition most of the particles have got masses

The Higgs H, the EW gauge bosons (W and Z), the top (t), button (b) and charm (c )
quarks and the tau (1) lepton decay very fast and don'’t survive this epoch.

Thus by the time T ~ 1 GeV we are left just with the quarks up (u), dwon (d) and
strange (s), the electron (e), the muon (u), the three neutrinos (v) and their respective

antiparticles and also photons (y) and gluons (g)



The quark-gluon plasma:

FromT= 1GeVtoT=T,=175MeV
Accesible to RICH and LHC
Major components are: Quarks: u, d, and s, gluons, leptons and photons.

This epoch ends at the QCD phase transition (confinement and spontaneous
chiral symmetry breaking), most probably a cross-over.
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The QCD phase transition:

Around T.=175MeV,t=10° s
Hadronization takes place:qq =2 M,qqq~> B,gg = G...

Confinement and chiral symmetry breaking (condensates <GG> and <u u + d d>)

>
[
=
=
o
Y
4
(o9
—
=
[~
&




The hadron era:

From T=T.=175MeV (t=10° s)to T =1 MeV (t=1s)
Most of hadrons decay very fast
Strong, electromagnetic, weak, ineractions still faster than cosmic expansion

The survival particles are pions, protons, neutrons, muons, electrons, neutrinos,
photons and their corresponding antiparticles.

After some time even those hadrons annihilate

np—nNpg

A small baryon asymmetry remains 1 = ~ 6 X 1010

Ty

About T =80 MeV (t=10% s) pions and muons decople from the photons and
disappear (Beginning of the leptonic era) .



Some important events about T=1 MeV (t = 1 s):

Neutrino decoupling when weak interction rate equals the cosmic expansion rate

ve < Ve H  T?/mplanck \ 1 MeV

Photon reheating at T=m_ = 0.5 MeV (t = 10 s) produced by electron-positron
annihilation: :

vy «—e'e F-?l-nt G%T% N ( T )3

After that we are left just with many photons and a few protons, neutrons and
electrons (remember baryonic asymmetry)

Neutrons decople from protons (as neutrinos from electrons) and start to decay

Ny, —(mp—m - :
n_:e ( i p)/Tze Q/T Q:mn—mp:1.293MeV
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Primordial Nucleosinthesis

FromT=1MeV toT=0.1 MeV (=1 sto 100 s)

(Weinberg’s famous three minutes)
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"The Big Bang produced Hydrogen, Helium, Deuterium and a small amount of Lithium.
Unfortunately, it didn't generate enough of the last element for all our politicians."



Further important events

After T=1eV (1000 y) matter starts to dominate radiation.
End of the radiation era.

Begining of structure formation and BAO (=7 104 y)
Recombination at T = 0.3 eV (t= 380.000 y) p+e—>H+y
The Universe becomes neutral also locally.

And finally photon decoupling

Origin of the current Cosmic Microwave Background CMB
Perfect black body radiation at T = 3000 K (T= 2.7 K today)
Temperature fluctuations are of the order of 10-° or lesser
(bound on previous departure from homogeneity)
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An important remark:

The QCD phase transition could produce big inhomogenities because of the
fluctuations

(in addition to those produced by inflation or other previous phase transitions)

Those inhomogeneties must be washed up at the level of the CMB radiation
or lower

Dissipative processes during the hadron era could do the job

Estudying how this works is the main point of this work




Matter dominated era

From T = 379.000 y to about 300 million years no brilliant single objects in the
universe, just clouds of H and He (the Dark Eges)

At something about several hundred million years stars gallaxy and star
formation

9 x 10° y Sun formation

1010 y Earliest forms of life

10'% y Dark energy dominated era

5% Ordinary Matter

\' 70% Dark Energy




This is the 1st Hadron Spanish Network Days meeting!

The Hadron era in more detail:

From T =175 MeV,t=10° s, R, =10 km, M, ~ Mg
(just after the QCD phase transition)

Flat FRW metric ~ ds® = dt® — a®(t) [dr® + r® (df® +sin® 0d¢?®)] (s = 0)
1

Einstein Field Equations Rk — §gikR = 87 G T}, One hundred years old!
| | a\® 8rG dp  3a
Friedmann equation: 2] = 3°F and the matter equation: = ——(p+ P)
a

Total density: ¢ =py + Pv,p + Pet + Pua+ Prt 0o +onw+---

Strong, electromagnetic and weak interactions rates are much faster than the
cosmic expansion rates:



Thus we assume local thermodynamics equilibrium:
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Thermodynamics:

Adiabatic, homogeneous expansion (entropy conservation)

TdS =d(pV) + PdV. ntr~ < 7Or0
YY & T
1 dP +- -t t+tPi+---+ By 3 _ 3
s=—=(p+P)=— =t a L Sa~ = 50Q
T drT T
: 2?3
Effective degrees of freedom SO =071 - s (T)
i " T T o o179 4 — T T T T T T T T T T T T T T T T
17F - ISR SOOI WO
I N e ¥
15 ] \\\\
: 1 &2 AN BN
14 Bt SO
i | [ T=80MeY M Y
13} ] I T pogr
L ] 1r ‘~~~~ d
12f ; » =i
11 :—I eI e R R T T 15 0 . Co oy S
0 1 2 3 4 5 0.01 0.02 0.03 0.04 0.05

1/T (MeV)™ 1/T (MeV)™!



Why having a small pionic era (T= 175 to T = 80 Mev) is relevant?

Because they are strongly interacting

Large cross sections (not like photons)
Small transport coefficients K X 1/0
Small dissipation rates

Largest dissipative inertia

Still they have to erase any previous fluctuation to fit the CMB



Dissipation of thermal fluctuations

T(r,t) = Tpaer(t) + 0T (r,t)

s(r,t) = Spack(t) + ds(r,t).
k(1) 0 (0T (r,t))
' A (0T (r,t)) =
Heat equation (67T (r,t)) o (T) 5
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First Law dU =T dSt = (je -n)dX dt

je'n

Integrating and using Gauss Theorem  ASr :/ d¥dt
ov

Using Fourier Law ASt = / dV dtV - (—%R(T)VT)
Leibniz Rule ~ ASp = / aV di "’”g) (IV6T 2 — TAGT)
Thus: /ﬁ)(T)
7s(r,t) = L IVOT(r )2,
—V - jo(r,t) = “(TT) AST(r,t).

Entropy pruduced inside V: ASy (0Ty) = / dV dtos(r,t)
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e

Je
= [ dVdtV - (-)
5 T

ASt > 0

= ASy /S

e



Viscous Hydrodynamics and transport coefficients:

w=€c+ P

= — Pyt + ™ e )
Entalpy
[ VR
n~ = nu” +v" . D
P = P(e) H
ot = gyt — ﬁyﬂ Equation Landau-Lifshitz frame
T of state

0us" 20  second Law

Shear viscosity Bulk viscosity

™ = opyityVt + (C i 277) 8,uAr  Dissipative contribution to the
nT \2 " g energy-momentum tensor and current
vu = =k (57)" Vulf)

I @LTW -0 Navier-Stokes

Equations
Thermal conductivity



Kinetic Theory:

Chapman-Enskog

() =g [ dpes] )3E fy(t,%) fo(t,x) = np(t,%) + £V (2, %)
R 5 pp¥ _ 1 .
T (t,x) —gfd p(%)ngfp(t,X) np(t,X) A(B,—w) 1  Bose-Einstein
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(2 )3E o )3E

Viscous contribution to the energy-momentum tensor and current
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dt
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ChPT plus the IAM method fit very well pion scattering at the required energies
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Tranport coefficients as function of the temperature

Kovtun, Son and Starinets bound
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ASy [ Sback

ASV/Sback (in units of 10_3)
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Summary and open questions

After the QCD phase transition there was a small period of time where
pions carried an important fraction of the entropy of the universe

(more than photons!)

That era lasted from T =175 Mevto T =80 MeV (t = 10°sto 5 x 10-°s)
In that period of time pions interactions dominated dissipative processes
The physics of this era is well known but not very well developed

As the density is relatively small kinetic theory can be applied

It could be used to study entropy production by dissipation and to set
bounds on the fluctuation spectrum at the end of the QCD phase transition
to make them compatible with CMB

More work is needed in that interesting direction






Brief thermal history of the Universe

event time Z T
Planck time 104 s 1037 1 10'9GeV (1031 K)
graviton decoupling
GUT/Inflation/baryogenesis | 1035 s 1032 [ 1074 GeV (10%6 K)
EW unification 1012 s 1027 | 103 GeV (1070 K)
Quark-hadron transition 106 s 1018 [ 1 GeV (1012 K)
Neutrino decoupling 1s 10" |1 MeV (10° K)
e*e-annihilation 1s 105 |1 MeV (102 K)
nucleosinthesis 1-100 s 104 10.1-1 MeV (108-10° K)
Matter-radiation equality 103 years | 10% 1eV (1031 K)
recombination 10° years | 103 107 eV (103 K)
photon decoupling 105 years | 103 10-7eV (108 K)




Quiral Perturbation Theory (Momentum and mass expansion)
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The Inverse Amplitude Method
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