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Motivations

τ− → π−η(′)ντ belong to the second-class current processes still unobserved in
nature (Weinberg ’58)

It is an isospin violating process (mu ≠ md ,e ≠ 0)

Sensitive to the intermediate vector and scalar resonances (ρ, ρ′,a0,a′0...)
coupled to the ūd operator

Purposes

To describe the participating hadronic form factors

To predict the decay spectra and to estimate the branching ratios

To stimulate experimental collaborations to measure these decays
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Hadronic Matrix Element

ha
dr

on
iz
at
io
n

τ− ντ

W−

ū

d′ = Vudd + Vuss

π−,K−

η, η′

↪ (Escribano, González-Solís and Roig JHEP 1310 (2013) 039)
(Escribano, González-Solís, Jamin and Roig JHEP 1409 (2014) 042)

Ð→

this work

The decays proceed through the not yet
evidenced second class current:

G − Parity ∶ G∣X⟩ = eiπIy C∣X⟩ = (−1)IC∣X⟩

G∣d̄γµu⟩ = +∣d̄γµu⟩ ≠ G∣π−η⟩ = −∣π−η⟩

G-Parity violation

M
q2<<M2

W= GF√
2
Vud ū(pντ )γµ(1 − γ5)u(pτ)⟨π−η(′)∣d̄γµ(1 −��@@γ5

¯
0−,1+↛0+,1−

)u∣0⟩

The hadronic matrix element is generally parametrized as

⟨π−η(′)∣d̄γµu∣0⟩ = CV
π−η(′)

[(pη(′) − pπ−)µFπ−η(′)

+ (s) − (pη(′) + pπ−)µFπ−η(′)

− (s)]

with CV
π−η(′)

=
√

2
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Hadronic Matrix Element

Hadronic matrix element

Taking the divergence we obtain on the L.H.S

⟨0∣∂µ(d̄γµu)∣π+η(′)⟩ = i (md −mu)
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

O(ε
πη(′)

)⇒suppresion

⟨0∣d̄u∣π+η(′)⟩ = i∆QCD
K 0K+

´¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¶
suppression

CS
π−η(′)

Fπ
−η(′)

0 (s) (1)

where ∆PQ = M2
P −M2

Q , CS
π−η

=

√

2/3 , CS
π−η′

= 2/
√

3

while on the R.H.S (vector current not conserved)

iqµ⟨π−η(′)∣d̄γµu∣0⟩ = iCV
πη(′)

[(m2
η(′)

−m2
π−)Fπη

(′)

+
(s) − sFπη

(′)

−
(s)] (2)

Equating eqs. (1,2) allows us to relate Fπ
−η(′)

−
(s) with Fπ

−η(′)

0 (s) as

Fπη
(′)

−
(s) = −

∆π−η(′)

s

⎡⎢⎢⎢⎢⎢⎣

CS
πη(′)

CV
πη(′)

∆QCD
K 0K+

∆π−η(′)
Fπη

(′)

0 (s) + Fπ
−η(′)

+
(s)

⎤⎥⎥⎥⎥⎥⎦
(3)

The vectorial hadronic matrix element finally reads (qµ = (pη(′) + pπ−)µ+ and q2 = s)

⟨π−η(′)∣d̄γµu∣0⟩ =

[(pη(′) − pπ)µ +
∆π−η(′)

s
qµ]CV

πη(′)
Fπη

(′)

+
(s) +

∆QCD
K 0K+

s
qµCS

π−η(′)
Fπ

−η(′)

0 (s) (4)
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Hadronic Matrix Element

Differential decay width: τ− → π−(η, η′)ντ

dΓ (τ− → π−η(′)ντ )
d
√

s
=

G2
F M3

τ

24π3s
SEW ∣Vud ∣2 ∣Fπ

−η(′)

+
(0)∣2

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
O(επη)⇒suppression

(1 − s
M2
τ

)
2

⎧⎪⎪⎪⎨⎪⎪⎪⎩
(1 + 2s

M2
τ

)q3
π−η(′)

(s)∣F̃π
−η(′)

+
(s)∣2 +

3∆2
π−η(′)

4s
qπ−η(′)(s)∣F̃π

−η(′)

0 (s)∣2
⎫⎪⎪⎪⎬⎪⎪⎪⎭

where

qPQ(s) =

√
s2 − 2sΣPQ +∆2

PQ

2
√

s
, ΣPQ = m2

P +m2
Q , ∆PQ = m2

P −m2
Q

F̃π
−η(′)

+,0 (s) =
Fπ

−η(′)

+,0 (s)

Fπ
−η(′)

+,0 (0)
, Fπ

−η(′)

+
(0) = −

CS
π−η(′)

CV
π−η(′)

∆QCD
K 0K+

∆π−η(′)
Fπ

−η(′)

0 (0)

Our next task:

⇒ to compute the vector and scalar Form Factors Fπ−η(′)

+ (s) and Fπ−η(′)

0 (s).
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Form Factors Vector Form Factor

Vector Form Factor: RChT

The vector contribution current occurs via π0 − η − η′ mixing, so it is O(επη(′)) and hence
suppressed. The vector Form Factor is obtained by computing

η, η′

π−, K−

η, η′

π−, K−

V

+

χPT (LO) RχT (vector exchange)

⎛
⎝

Fπ
−η

+
(s)

Fπ
−η′

+
(s)

⎞
⎠
= ( επηcosθηη′ − επη′ sinθηη′

επη′cosθηη′ + επηsinθηη′
)

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
O(επη)⇒suppresion

×[1 +∑V=ρ,ρ′,ρ′′
FV GV

F2
s

M2
V−s

]
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

	
  

Fπ
−π0

+
(s)

Fπ
−π0

+
analysis:

e.g. Roig, Gomez-Dumm

Eur.Phys.J. C73 (2013)

We implement Fπ
−π0

+
from

τ− → π−π0ντ Belle data
to our work

θηη′ ∼ θP = (−13.3 ± 1.0)○
(KLOE Coll. PLB 648 ’07 267)

επη ∼ 0.018(2)
επη′ ∼ 0.005(1)
(Kroll Mod.Phys.Lett. A20 (2005))
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Form Factors Scalar Form Factor

Scalar Form Factor: Breit-Wigner

(md −mu)⟨π−η(′)∣d̄u∣0⟩ =∆QCD
K 0K+

CS
π−η(

′)
Fπ−η(′)

0 (s) =

η, η′

π−, K−

η, η′

π−, K−

S

η, η′

π−,K−

S

+ +

χPT (LO and NLO) RχT (scalar exchange) RχT (vacuum insertions)

Imposing Fπ−η(′)

0 (s) to vanish for s →∞ we arrive at

Fπ−η(′)

0 (s) = cπ
−η(′)

0

M2
S+∆

π−η(′)

M2
S−s−iMSΓS(s) ,

cπ
−η

0 = cosθηη′ −
√

2sinθηη′ , cπ
−η′

0 = cosθηη′ + 1√
2

sinθηη′

ΓS(s) = Γa0(M2
a0
) ( s

M2
a0
)

3/2
h(s)

h(M2
a0

)

h(s) = σKK (s) + 2
3σπη(s) (cπ

−η
0 )

2
(1 + ∆πη

s )
2
+ 4

3σπη′(s) (cπ
−η′

0 )
2
(1 + ∆πη′

s )
2
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Form Factors Scalar Form Factor

Scalar Form Factor: Breit-Wigner

(md −mu)⟨π−η(′)∣d̄u∣0⟩ =∆QCD
K 0K+

CS
π−η(

′)
Fπ−η(′)

0 (s) =

η, η′

π−, K−

η, η′

π−, K−

S

η, η′

π−,K−

S

+ +

χPT (LO and NLO) RχT (scalar exchange) RχT (vacuum insertions)

Imposing Fπ−η(′)

0 (s) to vanish for s →∞ we arrive at

Fπ−η(′)

0 (s) = cπ
−η(′)

0

M2
S+∆

π−η(′)

M2
S−s−iMSΓS(s)

● Real part of the loop unconsidered

⇒ violation of analyticity

0.0 0.5 1.0 1.5 2.0 2.5 3.0
0

2

4

6

8

10

12

14

s HGeVL

ÈF�

0Π
Η
H

s
LÈ

Breit-Wigner Scalar FF
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Form Factors Scalar Form Factor

Scalar Form Factor: Elastic final state interactions
Analyticity and elastic unitarity ensured through a dispersion relation

Fπ−η(′)

0 (s) = 1
π
∫

∞

sth

ds′
ImFπ−η(′)

0 (s′)
s′ − s − iε

=Im

π−

η(′)

π−

η(′)

π−

η(′)

T ImFπ−η(′)

0 (s) = σπη(′)(s)Fπ−η(′)

0 T ∗(s)

= Fπ−η(′)

0 sin δπη
(′)

1,0 (s)e−iδπη
(′)

1,0 (s)

§ (once subtracted) Omnès solution (Omnès ’58)

Fπ−η(′)

0 (s) = P(s)exp

⎡⎢⎢⎢⎢⎢⎣

s − s0

π
∫

∞

sth

ds′
δ
π−η(′)

1,0 (s′)
(s′ − s0)(s′ − s − iε)

⎤⎥⎥⎥⎥⎥⎦
= P(s)Ω(s)
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Form Factors Scalar Form Factor

SFF: Omnès

Elastic unitarity: Form factor phase= δπ−η(′) 2→ 2 elastic scattering

δπ
−η(′)

1,0 (s) = arctan
Imt1,0(s)
Ret1,0(s)

t1,0: unitarized S-waves of the U(3) ×U(3) amplitudes in χPT at
one-loop including resonances (Guo-Oller: Phys.Rev. D84 (2011) 034005)

(Guo-Oller-Ruiz Elvira: 1206.4163)

c̃d = cd/
√

3, c̃m = cm/
√

3

cd = 19.8 MeV , cm = 41.9 MeV

Ma0,S8 = 1397 MeV , MS1 = 1100 MeV

a10,πη
SL = 2, a10,πη′

SL = −0.95

Λ2 = −0.37
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Form Factors Scalar Form Factor

SFF: Omnès

Elastic unitarity: Form factor phase= δπ
−η(′)

1,0 2→ 2 elastic scattering

δπ
−η(′)

1,0 (s) = arctan
Imt1,0(s)
Ret1,0(s)

, t1,0(s) =
N1,0(s)
D1,0(s)

D(s) = D(s0) +
s − s0

π
∫

∞

sth
ds′

ImD(s′)
(s′ − s0)(s′ − s − iε)

, N(s) = s − s0

π
∫

sL

−∞

ds′
ImN(s′)

(s′ − s0)(s′ − s − iε)

Simplified perturbative solution

t1,0(s) =
N1,0(s)

1 + g(s)N1,0(s)
, N1,0(s) = TO(p2)+res+loop

1,0 − g(s)(TO(p2)
1,0 )2

g(s): meson one-loop scalar functions
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Form Factors Scalar Form Factor

SFF: Omnès

Assuming Fπ−η(′)

0 (s) to behave as s−1 ∶ Fπη(′)

0 (s) = P(s)Ω(s),

Ω(s) ∼ s−`, ` = 1
π
(δ(∞) − δ(ssth)); δ(∞) = nπ⇒ P(s) constant (n = 1)

P(s) = F Breit−Wigner
0 (0)our choice:

1.0 1.2 1.4 1.6 1.8
0

50

100

150

200

s HGeVL

∆
Π

Η
' H

s
LH

ë

L

0.0 0.5 1.0 1.5 2.0 2.5 3.0
-1

0

1
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5

6

s HGeVL

F
0Π

Η
H

s
L Absolut value

Imaginary Part

Real Part
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Form Factors Scalar Form Factor

SFF: Closed expression

Once subtracted dispersion relation

F(s + iε) = F(s0) +
s − s0

π
∫

∞

sth

ds′
σ(s′)t∗IJ(s′)F(s′)

(s′ − s0)(s′ − s − iε) = F(s0) + F̃(s + iε),

F̃(s + iε) − F̃(s − iε) = 2iσ(s)t∗(s + iε)F(s + iε)
= 2iσ(s)t∗(s + iε)[F(s0) + F̃(s + iε)]

t = N/D
Imt−1 = −σ(s)

⎫⎪⎪⎬⎪⎪⎭ImD(s) = −Nσ(s)

F̃(s + iε)D(s + iε) − F̃(s − iε)D(s − iε)

= −2iImD(s)F(s0),

F̃(s + iε) = 1
D(s + iε)

−(s − s0)
π

∫
∞

sth

ds
′ ImD(s′)F(s0)
(s′ − s0)(s′ − s)

= −D(s + iε)−1 [D(s + iε) −D(s0)]F(s0)
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Form Factors Scalar Form Factor

SFF: Closed expression

Fπη(′)

0 (s) =∏
i=1

s − si
p

s − si
z

D(s)−1D(s0)F0(s0)

sp and sz : poles and zeros of D(s) = 1 − g(s)N(s) Iwamura, Kurihara, Takahashi ’77
Kamal ’79, Kamal, Cooper ’80
Jamin, Oller, Pich ’01

s0 = 0

F0(s0) = F BW
0 (0)

sz = 1.390 GeV

N(s) = TO(p2)+res+��HHloop
1,0

0.0 0.5 1.0 1.5 2.0 2.5 3.0

0.5
1.0

5.0
10.0

50.0

s HGeVL

ÈF�

0Π
Η
' H

s
LÈ

Closed expression
Omnès
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Form Factors Scalar Form Factor

SFF: Coupled channels case

←ÐOther cuts (K K̄ , πη′...)

F i
0(s) =

1
π

2

∑

j=1
∫

∞

si

ds′
Σj(s′)F j

0(s
′
)T i→j

0 (s
′
)
⋆

(s′ − s − iε)

=Im

π−

η

π−

η

π−

η, η′

T

Fπη0 (s) = 1
π
∫

∞

sth1
ds′

σπη(s′)Fπη0 (s′)T∗

πη→πη(s′)
s′ − s − iε

+ 1
π
∫

∞

sth2
ds′

σπη′(s′)Fπη
′

0 (s′)T∗

πη′→πη
(s′)

s′ − s − iε

=Im

π−

η′

π−

η′

π−

η, η′

T

Fπη
′

0 (s) = 1
π
∫

∞

sth1
ds′

σπη(s′)Fπη0 (s′)T∗

πη→πη′
(s′)

s′ − s − iε
+ 1
π
∫

∞

sth2
ds′

σπη′(s′)Fπη
′

0 (s′)T∗

πη′→πη′
(s′)

s′ − s − iε
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Form Factors Scalar Form Factor

SFF: Coupled channels case (closed expression)

F0(s) =∏
i=1

s − si
p

s − si
z

D(s)−1D(s0)F(s0)

sp and sz : poles and zeros of detD(s) Iwamura, Kurihara, Takahashi PTF 58 (1977)
Kamal ’79, Kamal, Cooper ’80

sz = 1.390 GeV
F0(s0) = F BW

0 (0)F0(s) = (Fπη
0 (s)

Fπη′

0 (s)) ,

D(s) = 1 − g(s)N(s),

g(s) = (gπη 0
0 gπη′

) ,

N(s) = (Nπη→πη Nπη→πη′
Nπη′→πη Nπη′→πη′

) ,
0.0 0.5 1.0 1.5 2.0

0.5

1.0

5.0

10.0

s HGeVL

ÈF�

0Π
Η

H
s

LÈ
ΠΗ coupled to ΠΗ'
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Form Factors Scalar Form Factor

SFF: Coupled channels case (closed expression)

F0(s) =∏
i=1

s − si
p

s − si
z

D(s)−1D(s0)F(s0)

sp and sz : poles and zeros of detD(s) Iwamura, Kurihara, Takahashi PTF 58 (1977)
Kamal ’79, Kamal, Cooper ’80

sz = 1.390 GeV
F0(s0) = F BW

0 (0)F0(s) = (Fπη
0 (s)

Fπη′

0 (s)) ,

D(s) = 1 − g(s)N(s),

g(s) = (gπη 0
0 gπη′

) ,

N(s) = (Nπη→πη Nπη→πη′
Nπη′→πη Nπη′→πη′

) ,
0.0 0.5 1.0 1.5 2.0

0.01

0.1
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100

1000

s HGeVL

ÈF�

0Π
Η
' H

s
LÈ

ΠΗ' coupled to ΠΗ
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Form Factors Scalar Form Factor

SFF: Coupled channels case (closed expression)

F0(s) =∏
i=1

s − si
p

s − si
z

D(s)−1D(s0)F(s0)

sp and sz : poles and zeros of detD(s) Iwamura, Kurihara, Takahashi PTF 58 (1977)
Kamal ’79, Kamal, Cooper ’80

sz = 1.390 GeV
F0(s0) = F BW

0 (0)F0(s) = (Fπη
0 (s)

Fπη′

0 (s)) ,

D(s) = 1 − g(s)N(s),

g(s) =
⎛

⎜

⎝

gπη 0 0
0 gπη′ 0
0 0 gKK

⎞

⎟

⎠

,

N(s) =
⎛

⎜

⎝

Nπη→πη Nπη→KK Nπη→πη′
Nπη′→πη Nπη′→πη′ Nπη′→KK

NKK→πη NKK→πη′ NKK→KK

⎞

⎟

⎠ 0.0 0.5 1.0 1.5
0.2

0.5

1.0

2.0

5.0

10.0

s HGeVL

ÈF�

0Π
Η

H
s

LÈ

ΠΗ coupled to KK & ΠΗ'
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Form Factors Scalar Form Factor

SFF: Coupled channels case (closed expression)

F0(s) =∏
i=1

s − si
p

s − si
z

D(s)−1D(s0)F(s0)

sp and sz : poles and zeros of detD(s) Iwamura, Kurihara, Takahashi PTF 58 (1977)
Kamal ’79, Kamal, Cooper ’80

sz = 1.390 GeV
F0(s0) = F BW

0 (0)F0(s) = (Fπη
0 (s)

Fπη′

0 (s)) ,

D(s) = 1 − g(s)N(s),

g(s) =
⎛

⎜

⎝

gπη 0 0
0 gπη′ 0
0 0 gKK

⎞

⎟

⎠

,

N(s) =
⎛

⎜

⎝

Nπη→πη Nπη→KK Nπη→πη′
Nπη′→πη Nπη′→πη′ Nπη′→KK

NKK→πη NKK→πη′ NKK→KK

⎞

⎟

⎠ 0.0 0.5 1.0 1.5 2.0
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Branching ratios predictions

Branching Ratio of τ− → π−ηντ

0.6 0.8 1.0 1.2 1.4 1.6 1.810-4

0.001

0.01

0.1

1

10

s HGeVL

10
16
ÿd
G
êd

s

Vector
Scalar: 2 coupled channels
Full: Vector + 2 coupled ch.

Hayasaka PoS’09
(Belle)

(BaBar)

P. del Amo Sanchez et.al
(PRD 83 032002 ’11)

BRBaBar
exp < 9.9 ⋅ 10−5 95%CL

BRBelle
exp < 7.3 ⋅ 10−5 90%CL

in units of 10−5

BRV BRS BR Reference
0.25 1.60 1.85 Tisserant, Truong’82
0.12 1.38 1.50 Pich’87
0.15 1.06 1.21 Neufeld, Rupertsberger’94
0.36 1.00 1.36 Nussinov, Soffer’08

[0.2, 0.6] [0.2, 2.3] [0.4, 2.9] Paver, Riazuddin’10
0.44 0.04 0.48 Volkov, Kostunin’12
0.13 0.20 0.33 Descotes-Genon, Moussallam’14

0.9 ± 0.2 2.70 ± 1.10 3.60 ± 1.12 Our prediction: Breit-Wigner (prel.)
0.9 ± 0.2 0.28 ± 0.07 1.18 ± 0.21 Our prediction: Elastic rescattering (prel.)
0.9 ± 0.2 0.54 ± 0.13 1.44 ± 0.23 Our prediction: 2 coupled channels (prel.)
0.9 ± 0.2 0.31 ± 0.08 1.21 ± 0.22 Our prediction: 3 coupled channels (prel.)
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Branching ratios predictions

Branching Ratio of τ− → π−η′ντ
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0.001

0.1

10

s HGeVL
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s Vector
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Full: Vector + 2 coupled ch.

BRV BRS BR Reference
< 10−7

[0.2, 1.3] ⋅ 10−6
[0.2, 1.4] ⋅ 10−6 Nussinov, Soffer’09

[1.4 ⋅ 10−9, 3.4 ⋅ 10−8
] [6.0 ⋅ 10−8, 1.8 ⋅ 10−7

] [6.1 ⋅ 10−8, 2.1 ⋅ 10−7
] Paver, Riazuddin’11

1.1 ⋅ 10−8 2.6 ⋅ 10−8 3.7 ⋅ 10−8 Volkov, Kostunin’12
[10−11, 10−9

] [0.2 ⋅ 10−8, 4.4 ⋅ 10−8
] [0.2 ⋅ 10−8, 4.4 ⋅ 10−8

] Our prediction: Breit-Wigner (prel.)

[10−11, 10−9
] ∼ 0.15 ⋅ 10−6

∼ 0.15 ⋅ 10−6 Our prediction: Elastic rescattering (prel.)

[10−11, 10−9
] ∼ 10−6

∼ 10−6 Our estimate: 2 coupled channels (prel.)

[10−11, 10−9
] ∼ 10−6

∼ 10−6 Our estimate: 3 coupled channels (prel.)

BRBaBar
exp < 4 ⋅ 10−6, BRBaBar

exp < 7.2 ⋅ 10−6, BRCLEO
exp < 7.4 ⋅ 10−5 90%CL
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Branching ratios predictions

Branching Ratio estimates: η(′) → π+`−ν` (` = e, µ)

dΓ

d
√

s
=

G2
F ∣VudF+(0)∣2(Cπη

V )2(s −m2
l )2

24π3M3
ηs

{(2s +m2
` )q3

πη ∣F̃+(s)∣2 +
3
4s

∆2
πηm`

2qπη ∣F̃0(s)∣2}

Decay Descotes-Genon, Moussallam ’14 Our estimate
η → π+e−νe + c.c. ∼ 1.40 ⋅ 10−13 1.9 ⋅ 10−13

η → π+µ−νµ + c.c. 1.02 ⋅ 10−13 1.4 ⋅ 10−13

η′ → π+e−νµ + c.c. 1.3 ⋅ 10−16

η′ → π+µ−νµ + c.c. 1.2 ⋅ 10−16
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Conclusions

Conclusions

τ− → π−η(′)ντ are suppressed because of both G-parity and
isospin violation

Vector Form Factor: related to the very well-known vector form
factor of the π−π0 mode and, therefore, our predictions are robust

Scalar Form Factor: i) Simple Breit-Wigner non-analytic ii) Analytic
and elastic unitary (Omnès). iii) Proposal for coupled channels:
resonances generated dynamically through final state interactions

I would like to encourage experimental groups to measure these
interesting physical processes
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Extra slides

Possible new physics contributions: Charged Higgs
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