Higgs Physics within and beyond the SM

IFIC, May 11-14, 2015 Exercises

Christophe Grojean DESY & ICREA/IFAE

(christophe.grojean@cern.ch)

Relativistic kinematics

 \square N-body decays: $A \rightarrow B_1 + B_2 + ... + B_N (B_1 ... B_N \text{ are a priori different particles})$

- O In the rest frame of the particle A, find the minum and the maximum energy of the particle B1
 - o check first that the minimum energy of a system of two particles whose momenta add to a fixed value is obtained when there is no relative motion between the two particles.
 - O check that two particles with no relative motion behave like a single particle whose mass is the sum of the masses of the two initial particles

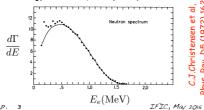
$$E_{B_1}^{\min} = m_{B_1}c^2 \qquad E_{B_1}^{\max} = \frac{m_A^2 + m_{B_1}^2 - (m_{B_2} + \ldots + m_{B_N})^2}{2m_A}c^2$$

O Application: compute the range of energy of an electron obtained from the decay of a muon at rest

$$m_e c^2 \approx 511 \text{ keV} \le E_e \le 53 \text{ MeV} \approx \frac{m_\mu^2 + m_e^2}{2m_\mu} c^2$$

O From the plot below showing the distribution of the electron energy in neutron β decay, compute the neutron-proton mass difference

$$m_n - m_p \approx 1.3 \text{ MeV}$$



Relativistic kinematics

 \square Two body decays: $A \rightarrow B + C$

O In the rest frame of the particle A, find the energy and momentum of the particles B and C

$$E_B = \frac{m_A^2 + m_B^2 - m_C^2}{2m_A}c^2 \qquad p = \frac{\sqrt{\lambda(m_A, m_B, m_C)}}{2m_A}c \\ \lambda(m_A, m_B, m_C) = (m_A + m_B + m_C)(m_A + m_B - m_C)(m_A - m_B + m_C)(m_A - m_B - m_C)}$$

O Application: compute the energies of the final particles in the following decays:

O In the rest frame of the particle A, find the speed and the decay lengths (if they decay) of B and C

$$v_B = \frac{pc^2}{E_B} \qquad \qquad d_B = \frac{p}{m_B} \tau_B$$

O Application: $\pi \to \mu^+ \tilde{\nu}_{\mu}$, what is the distance travelled by the muon before it decays?

$$d_{\mu} \approx \frac{m_{\pi^{-}}^2 - m_{\mu}^2}{2m_{\mu}m_{\pi^{-}}}c\tau_{\mu} \approx 186 \text{ m}$$

Christophe Grojean

Exercises p. 2

IFIC, May 2015

Higgs self-couplings

The Higgs potential is fully determined in terms of two parameters that can fixed by v. ie, mz. and mH. Compute the self-couplings of the physical Higgs boson after EW symmetry breaking in terms of these two quantities.

General expression of the ρ parameter

If $SU(2)_L \times U(1)_V$ is broken not only through a doublet, but also through a collection of scalar fields in the 2si+1 representation of SU(2)L, carrying a hypercharge y_i and acquiring a vev v_i , show that the ρ parameter is now given by

$$\rho = \frac{\sum_{i} (s_i(s_i + 1) - y_i^2) v_i^2}{\sum_{i} 2y_i^2 v_i^2}$$

What are the representations for which one obtains $\rho = 1$?

Christophe Grojean Exercises p. 4 IFIC, May 2015

Christophe Grojean

Exercises p. 3

Threshold behavior

Near threshold, the Higgs decay into a pair of fermions is highly suppressed by the third power of β ($\beta = \sqrt{1 - 4m_f^2/m_h^2}$). This is characteristic of a coupling of scalar field to fermions. Assuming that the Higgs were a pseudo-scalar, show that its decay rate into a fermion pair would be given instead by

$$\Gamma\left(h \to f\bar{f}\right) = \frac{N_c m_f^2 m_h}{8\pi v^2} \beta$$

Christophe Grojean

Exercises p. 5

IFIC, May 2015

EW phase transition with H6 potential

Show that the most general potential of degree-6 for the Higgs doublet that breaks EW symmetry can be always be written in the following form with λ positive

$$V(H) = \lambda \left(|H|^2 - \frac{v^2}{2} \right)^2 + \frac{1}{\Lambda^2} \left(|H|^2 - \frac{v^2}{2} \right)^3$$

- 1) Show that for this potential indeed breaks EW when $\Lambda^2 > v^2/(2\lambda)$
- 2) Compute the vev of the Higgs and the mass of the physical Higgs boson, compute the Higgs cubic self-interaction (and compare with the SM results)

We recall that the finite-temperature corrections generates a correction to the potential of the form

$$V = \frac{T^2}{24} \left(\sum_{\text{boson}} m^2 + \frac{1}{2} \sum_{\text{fermion}} m^2 \right)$$

- $V = \frac{T^2}{24} \left(\sum_{\text{boson}} m^2 + \frac{1}{2} \sum_{\text{fermion}} m^2 \right)$ 3) Compute the thermal mass of the Higgs boson for this model: $V = \frac{1}{2} c \, T^2 h^2$ answer: $c = \frac{1}{16 v^2} \left(8 m_t^2 + 8 m_W^2 + 4 m_Z^2 + 4 m_h^2 12 \frac{v^4}{\Lambda^2} \right)$
- 4) Keeping only this thermal mass as the finite-temperature correction, show that the phase
 - transition is 1st order if $\Lambda < \sqrt{3}v^2/m_h^2$ 5) Compute the critical temperature and critical vev
 - 6) Show that the phase transition is strong ($v_c/T_c>1$) for $484~{\rm GeV}\leq \Lambda \leq 788~{\rm GeV}$

For the numerical application, you'll use

$$v = 246 \text{ GeV}, m_h = 125 \text{ GeV}, m_W = 80 \text{ GeV}, m_Z = 91 \text{ GeV}, m_t = 173 \text{ GeV}$$

Christophe Grojean Exercises p. 7 IFIC, May 2015

Unitarity bound

for a 2-to-2 process, the (angular) differential cross-section is related to the amplitude by $\frac{d\sigma}{d\Omega}=\frac{1}{64\pi^2s}|\mathcal{A}|^2$

$$\frac{d\sigma}{d\Omega} = \frac{1}{64\pi^2 s} |\mathcal{A}|$$

Partial wave amplitude decomposition: the partial waves are defined by

$$\mathcal{A} = 16\pi \sum_{l=0}^{\infty} (2l+1) P_l(\cos\theta) a_l$$

where PI are the & polynomials ($P_b(x)=1, P_1(x)=x, P_2(x)=3x^2/2-1/2\dots$ & $\int_{-1}^1 dx B(x) P_t(x)=\frac{2}{2t+1} \delta_{tt}$)

Show that
$$a_l=rac{1}{32\pi}\int_{-1}^{+1}d(\cos\theta)P_l(\cos\theta)\mathcal{A}$$
 and $\sigma=rac{16\pi}{s}\sum_{l=0}^{\infty}(2l+1)|a_l|^2$

Optical theorem: using the optical theorem: $\sigma = {
m Im}\left({\cal A}_{| heta=0}
ight)/s$

show that
$$\left|\operatorname{Re}\left(a_{l}\right)\right|\leq1/2$$

Consider: W⁺ W⁻ → W⁺ W⁻

Compute ao for the SM without and with the Higgs. Compare the unitarity bounds with the NDA estimate of SM cutoff without a Higgs. What is the origin of the missing $\sqrt{\pi}$ factor?

Christophe Grojean Exercises p. 6 IFIC, May 2015

β function, gauge coupling running

The one-loop eta function giving the running of the coupling constant of an SU(N) gauge symmetry is given by

$$\beta = \frac{dg}{d\log u} = -\frac{1}{16\pi^2}b_0g^3$$
 ie $\frac{d\alpha}{d\log u} = -\frac{1}{2\pi}b_0\alpha^2$

where the coefficient bo is computed to

$$b_0 = \frac{11}{3} T_2(\text{spin-1}) - \frac{2}{3} T_2(\text{chiral spin-1/2}) - \frac{1}{3} T_2(\text{complex spin-0})$$

 $T_2(R)$ is defined from the traces of the product of two generators of SU(N) in the representation R

$$\operatorname{Tr}\left(T^{a}(R)T^{b}(R)\right) = T_{2}(R)\delta^{ab}$$

- 1) What should be the sign of b₀ to get an asymptotically free theory?
- 2) Compute $\alpha(\mu)$ from $\alpha(\mu_0)$
- 3) Compute b_0 for $U(1)_{em}$ with a single massive electron. What is the value of the Landau pole of QED, ie the energy at which α_{em} blows up? At which energy do we get a 1% departure from $\alpha(0)$?
- 4) Compute the coefficients bo for the 3 gauge groups of the SM
- 5) Compute the coefficients bo for the 3 gauge groups of the MSSM
- 6) In N=4 supersymmetric gauge theories, a supermultiplet contains 1 spin-1 field, 4 spin-1/2 chiral fields and 6 real spin-0 fields in the adjoint representation. Compute the coefficient bo for that theory? What do you conclude?

Christophe Grojean IFIC, May 2015

EW oblique corrections

The oblique parameters are defined from physical observables:

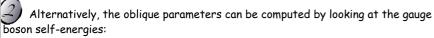
$$\Delta m_W = -\frac{\alpha m_W}{4(c_0^2 - s_0^2)} \mathcal{S} + \frac{\alpha c_0^2 m_W}{2(c_0^2 - s_0^2)} \mathcal{T} + \frac{\alpha m_W}{8s_0^2} \mathcal{D}$$

$$\Delta s_{\text{eff}}^2 = \frac{\alpha}{4(c_0^2 - s_0^2)} \mathcal{S} - \frac{\alpha c_0^2 s_0^2}{c_0^2 - s_0^2} \mathcal{T}$$

$$\Delta \Gamma_{ll} = -\frac{2(1 - 4s_0^2)\alpha \Gamma_{ll}^0}{(1 + (1 - 4s_0^2)^2)(c_0^2 - s_0^2)} \mathcal{S} + \left(1 + \frac{8(1 - 4s_0^2)s_0^2 c_0^2}{(1 + (1 - 4s_0^2)^2)(c_0^2 - s_0^2)}\right) \alpha \Gamma_{ll}^0 \mathcal{T}$$

We are using α_{em} , G_F and m_Z as input parameters

s_{eff} is defined via the LR asymmetry in Z-decay: $A_{LR} = \frac{(-1/2 + s_{\rm eff}^2)^2 - s_{\rm eff}^4}{(-1/2 + s_{\rm eff}^2)^2 + s_{\rm eff}^4}$. co and s₀ are SM tree-level values of the sin and cos of the weak mixing angle



oblique parameters = modified propagators of W[±] and Z

$$\mathcal{L} = -\Pi_{+-}(p^2)\,W_+^\mu W_{-\,\mu} - \tfrac{1}{2}\Pi_{33}(p^2)\,W_3^\mu W_{3\,\mu} - \Pi_{3B}(p^2)\,W_3^\mu B_\mu - \tfrac{1}{2}\Pi_{BB}(p^2)\,B^\mu B_\mu$$

$$\widehat{S} = \frac{\alpha_{em}}{4s_W^2} S = \frac{g}{g'} \Pi'_{3B}(0) \qquad \quad \widehat{T} = \alpha_{em} T = \frac{(\Pi_{33}(0) - \Pi_{+-}(0))}{m_{1\nu}^2} \qquad \quad \widehat{U} = -\frac{\alpha_{em}}{4s_W^2} U = \Pi'_{+-}(0) - \Pi'_{33}(0)$$

Christophe Grojean

/S from higher dimensional operator

We want to compute the oblique parameters when the following dimension-6 operator is added to the SM

$$\mathcal{L} = \frac{1}{\Lambda^2} H^{\dagger} W_{\mu\nu} H B_{\mu\nu}$$

In the unitary gauge, show that this operator gives only a correction to Π_{30} equal to

$$\Delta\Pi'_{3B} = \frac{v^2}{\Lambda^2}$$

Conclude that
$$S = rac{4s_W c_W}{\sqrt{2}lpha_{em}G_F\Lambda^2}$$

Because of the kinetic mixing, the Z and the γ are not obtained from the usual weak rotation from W_3 and B. Find the correct expressions of Z and γ .

The expression of e in terms of q and q' receives some corrections compared to its SM expression. Derive these corrections.

Write m_W in terms of the input observables: α , G_F and m_Z And rederive the expression of S

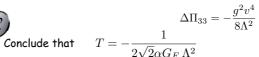
Christophe Grojean Exercises p. 11 IFIC, May 2015

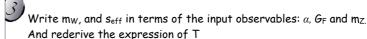
Ex. 7 T from higher dimensional operator

We want to compute the oblique parameters when the following dimension-6 operator is added to the SM

$$\mathcal{L} = rac{1}{\Lambda^2} \left| H^\dagger D_\mu H \right|^2$$

In the unitary gauge, show that this operator gives only a correction to Π_{33} equal to





$$\Delta m_W = \frac{c_0^2 m_W}{4\sqrt{2}(c_0^2 - s_0^2)G_F\Lambda^2} \qquad \Delta s_{\rm eff}^2 = -\frac{-s_0^2 c_0^2}{2\sqrt{2}(s_0^2 - c_0^2)G_F\Lambda^2}$$

$$\rho = \frac{m_W^2}{c_W^2 m_Z^2} \approx 1 + \alpha T$$

Exercises p.10

IFIC, May 2015

[♂]/Composite Higgs anomalous couplings

The Higgs boson doesn't have to be an elementary particle. It could be a bound state emerging from a strongly coupled sector. Below the compositeness scale of the Higgs, f, the dynamics of such a composite Higgs boson is well captured by the SM Lagrangian supplemented by a few dimension-six operators:

$$\mathcal{L} = |D_{\mu}H|^{2} + \frac{c_{H}}{2f^{2}} \left(\partial_{\mu}|H|^{2}\right)^{2} + \mu^{2}|H|^{2} - \lambda|H|^{4} - \frac{c_{6}\lambda}{3f^{2}}|H|^{6} - y_{f}\left(H\bar{f}_{L}f_{R}\left(1 + \frac{c_{y}}{f^{2}}|H|^{2}\right) + \text{h.c.}\right)$$

- 1) Compute the corrections to the Higgs self-couplings to the lowest order in $\xi=v^2/f^2$ (check that $\hat{h}=\left(1+\frac{c_H\xi}{2}\right)h+\frac{c_H\xi}{2}\frac{h^2}{v}+\frac{c_H\xi}{6}\frac{h^3}{v^2}$ is canonically normalized)
- 2) Compute the coefficients a,b,c for the effective Lagrangian:

$$\mathcal{L}_{\text{EWSB}} = \frac{v^2}{4} \text{Tr} \left(D_{\mu} \Sigma^{\dagger} D_{\mu} \Sigma \right) \left(1 + 2a \frac{h}{v} + b \frac{h^2}{v^2} \right) - \lambda \bar{\psi}_L \Sigma \psi_R \left(1 + c \frac{h}{v} \right)$$

- 3) What is the high-energy behavior of the amplitudes for WW-WW and WW- hh?
- 4) Compute the corrections to the decay width of the Higgs into a pair of fermions
- 5) Compute the corrections to the decay width of the Higgs into a pair of bosons

Christophe Grojean IFIC, May 2015