
Top quark mass reconstruction in the semi-leptonic channel using the Global χ^2 algorithm

(MC08 @ 10 TeV)

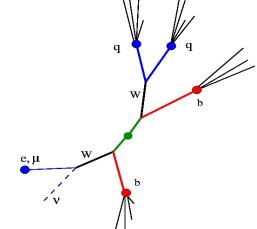
TOP mass working group meeting

María José Costa (IFIC-Valencia)
Carlos Escobar (IFIC-Valencia)
Salvador Martí (IFIC-Valencia)
María Moreno Llácer (IFIC-Valencia)

Talk outline

Outline

- Introduction
- Method
- Data samples and software
- Reconstruction of physics objects (in the semi-leptonic channel)
 - Electron reconstruction performance
 - Muon reconstruction performance
 - Missing transverse energy
 - Jet calibration studies
 - Jets reconstruction performance
- Event Selection (semi-leptonic channel)
- Top mass determination
 - Hadronic W mass reconstruction
 - Hadronic top mass reconstruction
 - Leptonic W mass reconstruction
 - Fitted top mass
- Conclusions


Introduction

Goal:

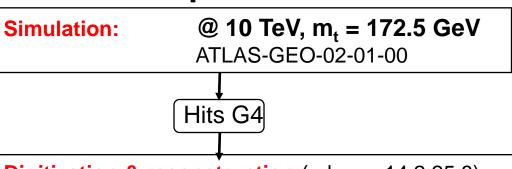
- Contribute to the studies of the ATLAS potential to measure the top quark mass using MC08 @ 10 TeV simulated data ($\mathbf{m_t} = 172.5 \text{ GeV}$).

How:

- Use the semi-leptonic channel (electron, muons or taus decaying leptonically + jets),
 σtt ~ 139 pb @ 10 TeV (golden channel).
 - Final state objects:
 - 1 (high pT) isolated electron/muon
 - 1 neutrino → MET
 - 2 light jets (neglecting ISR and FSR)
 - · 2 b jets

- Following a strategy similar to the one described in T9 Top Mass note but using a global χ^2 technique to minimize the χ^2 ; see talk from Carlos Escobar in Jan. & May 09 Top Mass meetings:
 - http://indico.cern.ch/getFile.py/access?contribld=4&resId=0&materialId=slides&confId=47030
 - http://indico.cern.ch/getFile.py/access?contribld=1&resId=0&materialId=slides&confId=50899

Method


- 1. Physics objects selection and performance study and jet pre-calibration using MC
- 2. Event selection
- 3. Hadronic W mass fit using χ^2
- 4. Hadronic b-jet association
- 5. Compute $p_z^{\ \nu}$ from MET
- 6. Leptonic b-jet association
- 7. Kinematic fit using a global χ^2 based on the entire final state and selected candidates:

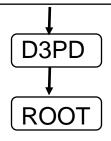
$$\chi^{2} = \sum_{\substack{4 \text{ jets} \\ + \text{lepton}}} \left(\frac{E_{i}^{reco} - \left(E_{i}^{\text{fit}}\right)^{2}}{\sigma_{E_{i}}} \right)^{2} + \left(\frac{M_{jj} - M_{W}^{PDG}}{\Gamma_{W}^{PDG}} \right)^{2} + \left(\frac{M_{lv} - M_{W}^{PDG}}{\Gamma_{W}^{PDG}} \right)^{2} + \left(\frac{M_{jjb_{H}} - \left(M_{top_{H}}^{\text{fit}}\right)^{2}}{\sigma_{top_{H}}} \right)^{2} + \left(\frac{M_{lvb_{L}} - \left(M_{top_{L}}^{\text{fit}}\right)^{2}}{\sigma_{top_{L}}} \right)^{2}$$

(additional terms could be added in the future)

- Fit parameters: E_{fit} (for jets and lepton) and M_{top} .

Data samples and software used

Digitization & reconstruction (release 14.2.25.8):


- ATLAS-GEO-02-00-00 (same as ATLAS-GEO-02-01-00 but diff. conditions)
- OFLCOND-SIM-00-00-06
- → Misaligned ID
- \rightarrow Beam spot displaced from (0, 0, 0) to (1.5, 2.5, -9) [mm]
- → Detector conditions as Sept. 08 (Pixel and LAr dead channels and modules)

AOD

Dataset: mc08.105200.T1_McAtNIo_Jimmy.merge.AOD.e357_s462_r635_t53

ARATopQuarkAnalysis (Our modifications are in tag 00-00-76)

- Running a private jobOptions on the Grid using Ganga.

Known problems:

There is a problem in the treatment of standalone muons in the MET computation.

Reconstruction and selection of physics objects

- Physics objects studied: electrons, muons, jets and missing Et (MET).
- Efficiencies, purities, resolutions, linearities and uniformities have been studied for the signal ttbar semi-leptonic events.

$$\varepsilon(\Delta R) = \frac{\# matches \ of \ truth \ e/\ \mu/\ jets \ with \ reconstructed \ e/\ \mu/\ jets \ (\Delta R)}{\# truth \ e/\ \mu/\ jets}$$

$$P(\Delta R) = \frac{\# matches \ of \ reconstructed \ e / \ \mu / \ jets \ with \ truth \ e / \ \mu / \ jets \ (\Delta R)}{\# reconstructed \ e / \ \mu / \ jets}$$

Energy linearity =
$$\frac{E_{reco} - E_{truth}}{E_{truth}}$$
 Vs. E_{reco}

Energy uniformity =
$$\frac{E_{reco} - E_{truth}}{E_{truth}}$$
 Vs. η_{reco} or ϕ_{reco}

Energy resolution =
$$\sigma \left(\frac{E_{reco} - E_{truth}}{E_{truth}} \right)$$
 Vs. E_{reco} or η_{reco}

Electron reconstruction performance

Electron reconstruction and selection

- Truth electrons: electrons coming from the W leptonic decay.
- Reconstructed electrons:
- The medium identification cuts have been used: based on information from EM calorimeters and tracking variables (egamma isEM ElectronMedium)
- author=1 or author=3
- pT>25 GeV
- $|\eta| < 2.5$ (and outside crack region: 1.37< $|\eta| < 1.52$)
- Isolation cut based on calorimeter energy: the additional Et in a cone with radius ΔR =0.2 around the electron < 6 GeV.

MATCHING CRITERIA:
$$\Delta R = \sqrt{(\phi_{reco} - \phi_{truth})^2 + (\eta_{reco} - \eta_{truth})^2} < 0.05$$

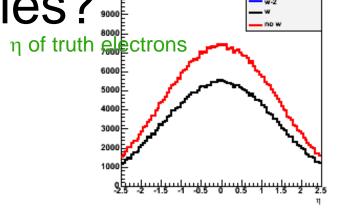
How to calculate efficiencies? ****

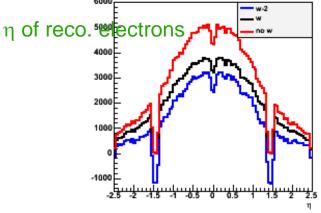
MC@NLO samples have event weight, which is +1 or -1.

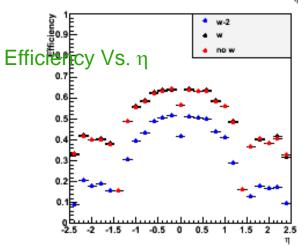
- * How to deal with events with:
- 1 truth electron with EventWeight@NLO= -1
- no reconstructed electron

\rightarrow Option A (w= -2):

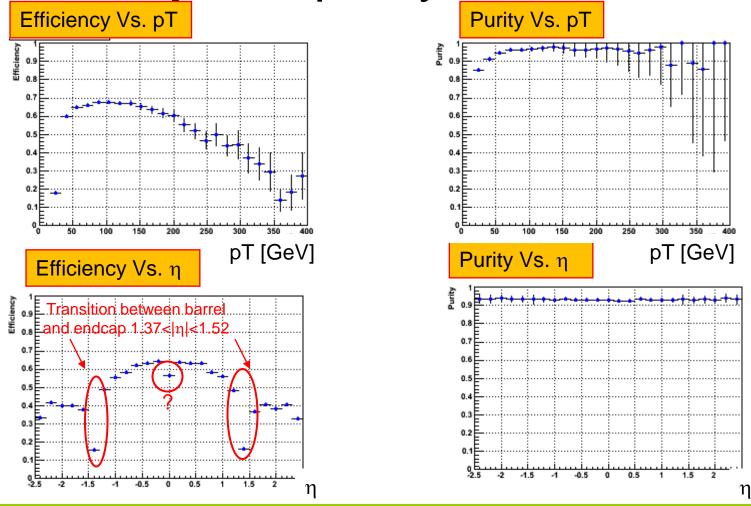
Fill truth and matched reco. histograms using EventWeights and in case no electron is found and EventWeight = -1, fill reco histo with EventWeight= -2.


→Option B (use w):


Fill truth histograms with its EventWeight and if a reco electron is matched then fill reco histo with its weight.


→ Option C (no w):

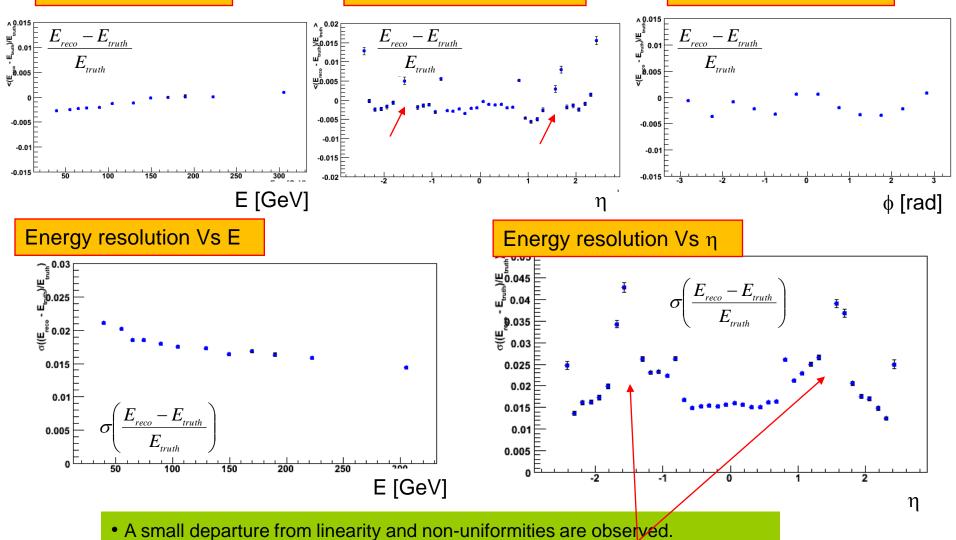
do not use EventWeights to calculate efficiencies or purities.


- About 12% of events have negative weight.
- Similar efficiencies obtain when using method B and C.
- Decide to use (in efficiency and purity plots) **method C**, (under discussion with the cross section note authors)

Efficiency and purity

- Efficiency of electron reconstruction reaches 70% except for:
 - low pT and large |η|,
 - the overlap region between barrel and endcap calorimeters (cracks): $1.37 < |\eta| < 1.52$,
 - $|\eta|$ >1.52 (calorimeter endcaps).

10


• The contamination is ~5% (purity: ~95%, increases with pT).

Linearity, uniformity and resolution

Energy uniformity in η

Energy uniformity in ϕ

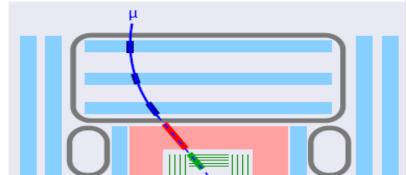
• Resolution is better for high energy and worse around the calorimeter cracks.

11

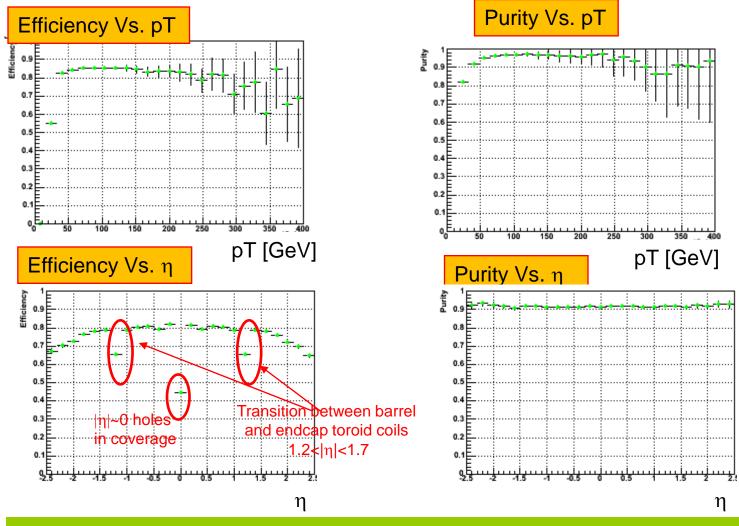
Muon reconstruction performance

Muon reconstruction and selection

• Truth muons: muons coming from the W leptonic decay

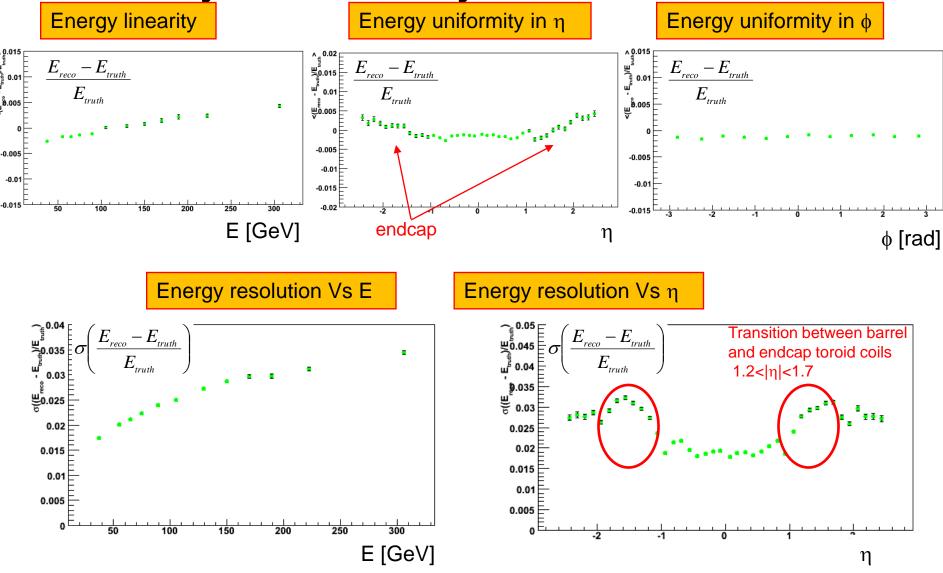

Reconstructed muons:

- Muon signature: Muon track passes through the ID, the calorimeters material (minimum ionizing energy deposits) and the MS.
- Muon reconstruction by STACO algorithm:
 ID + MS tracks → χ² match.



- STACOmuons
- isCombined=True
- pT>20 GeV
- $|\eta| < 2.5$
- Isolation cut: the additional Et in a cone with radius ∆R=0.2 around the muon <6 GeV
- remove muons if there is a good jet within $\Delta R < 0.3$.

MATCHING CRITERIA:
$$D_{ref} = \sqrt{\left(\frac{\phi_{reco} - \phi_{truth}}{0.005}\right)^2 + \left(\frac{\eta_{reco} - \eta_{truth}}{0.005}\right)^2 + \left(\frac{\Delta p_T / p_T}{0.03}\right)^2} < 100$$



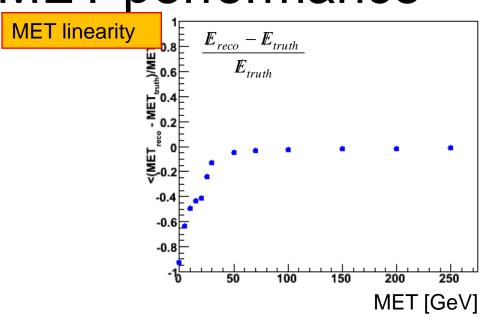
Efficiency and purity

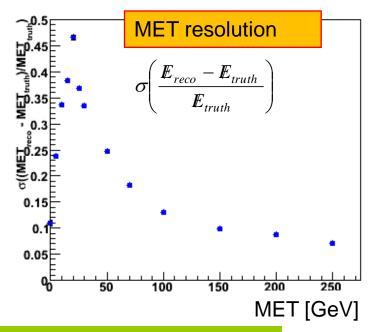
- Efficiency reaches 85% except for:
 - low pT region,
 - near $\eta \sim 0$ and intermediate region 1.2< $|\eta|$ <1.7.
- The purity is near 95%.

Linearity, uniformity and resolution

- Good linearity and uniformity in φ. Small non-uniformities observed in endcap region.
- Resolution is better for low energy muons and is worse in the transition region 1.2< $|\eta|$ <1.7.

MET reconstruction performance


MET reconstruction


- The MET is used as an estimate of the neutrino transverse momentum.
- Truth MET: contribution from all stable and non-interacting particles in the final state.
- Recontructed MET
 - Reconstructed by the RefMET algorithm (cell based):

$$\mathbb{E}_{x,y}^{Final} = MET_{x,y}^{Final} = MET_{x,y}^{Calo} + MET_{x,y}^{Cryo} + MET_{x,y}^{Muon}$$

MET performance

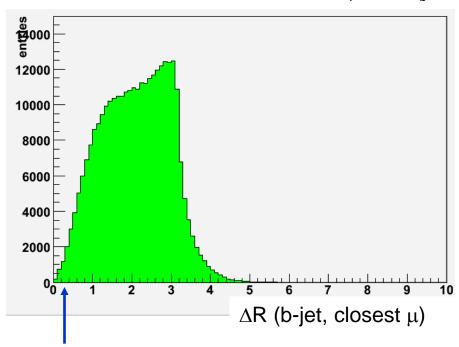
There is a problem in the treatment of standalone muons in the MET computation.

- Departure from linearity.
- The resolution is better for higher MET.
- A resolution of about 12 GeV is obtained, in agreement with what is expected.

Jet pre-calibration

- The jet calibration effects are removed by performing a jet pre-calibration to the parton level using MC information. This is done by:
 - matching jets to partons (requiring ΔR (quark-reco jet)<0.3)
 - deriving the correction factor: $C=E_{quark}/E_{jet}$ Vs. η_{jet} and E_{jet} .

This is performed separately for light jets and b-quark jets with and without muons.

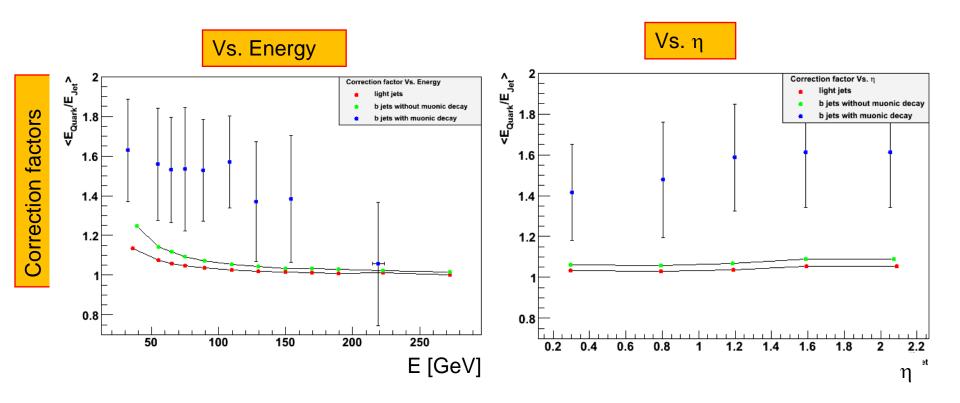

Jet reconstruction and selection

- The ATLAS implementation of the fixed cone jet finder algorithm (Cone4TowerJets) with $R_{cone} = 0.4$ was used to build jets.
- Jets are defined at 3 levels:
- Quark level: each quark is taken as a different jet
- Truth Particle jets: built from stable particles (neutrinos and muons generated in the collisions are excluded)
- Reconstructed jets: built from calorimeter towers defined as massless pseudo-particles (corrected by detector effects)
 - Cuts applied:
 - pT > 40 GeV (for top mass measurement) and pT>20 GeV (for jet calibration)
 - $|\eta| < 2.5$
 - Jets coinciding within ΔR <0.2 with reconstructed electrons are removed.
- Matching criteria:
 - Jets at different levels are associated based on the minimum ΔR and requiring:

$$\Delta R = \sqrt{\left(\phi_{reco} - \phi_{truth}\right)^2 + \left(\eta_{reco} - \eta_{truth}\right)^2} < 0.3$$

Jet clasification

- 3 types of jets have been considered separately:
 - light jets
 - b-jets not close to a reconstructed muon
 - b-jets close to a reconstructed muon (i.e. ∆R(jet,muon)<0.2)



- * Muon selection here is:
- STACO
- is High pT
- pT>10 GeV
- $|\eta| < 4$
- Etcone20< 6 GeV
- → Selection not optimized for the selection of soft muons within jets.

at reconstruction level the IP3D + SV1 b-tagging algorithm was used to tag b-jets (weight > 6)

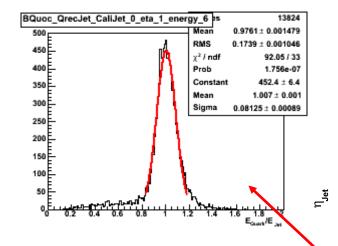
Correction factors and resolutions

- Correction factors (E_{quark}/E_{jet}) and energy resolutions ($\sigma(E_{quark}-E_{jet})$) depend on the jet energy and η .

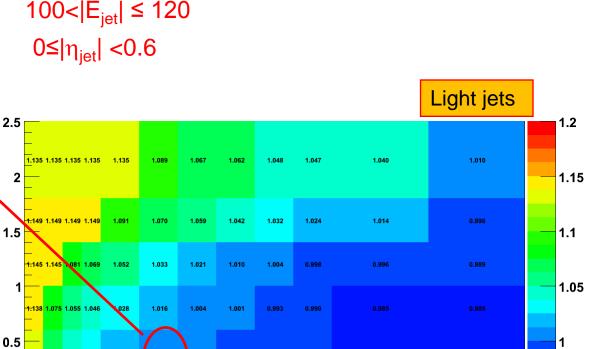
- Energy scale depends on the type of jets
- Correction factors are higher for b-jets with muonic decay (since the energy of the muon is not reconstructed in the jet).

Correction factors and resolutions

- Correction factors (E_{quark}/E_{jet}) and energy resolutions ($\sigma(E_{quark}-E_{jet})$) are computed for different energy and η regions.


1.021

100


150

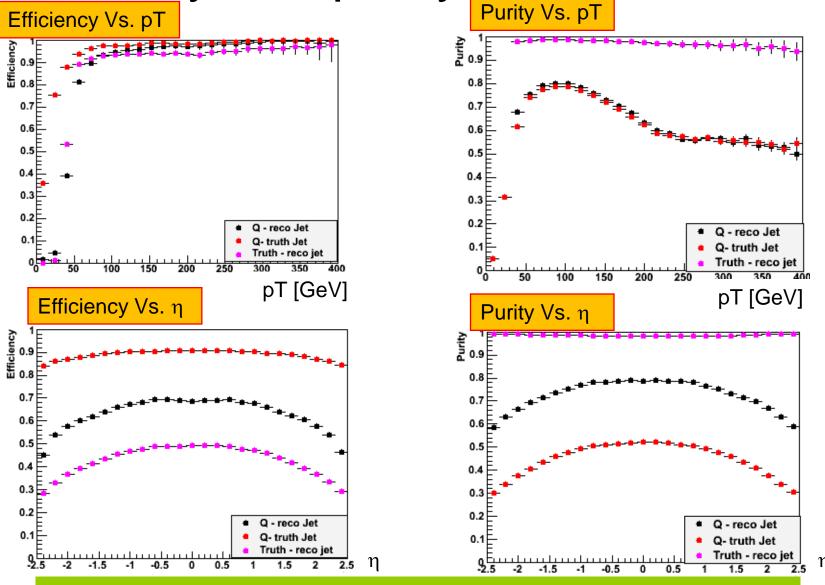
1.066 1.047 1.033

50

To make the fit more stable, a first Gaussian was fitted between the mean of the histogram ±2 times the RMS. A second fit is then perform in the same way using the mean and width of the first fit.

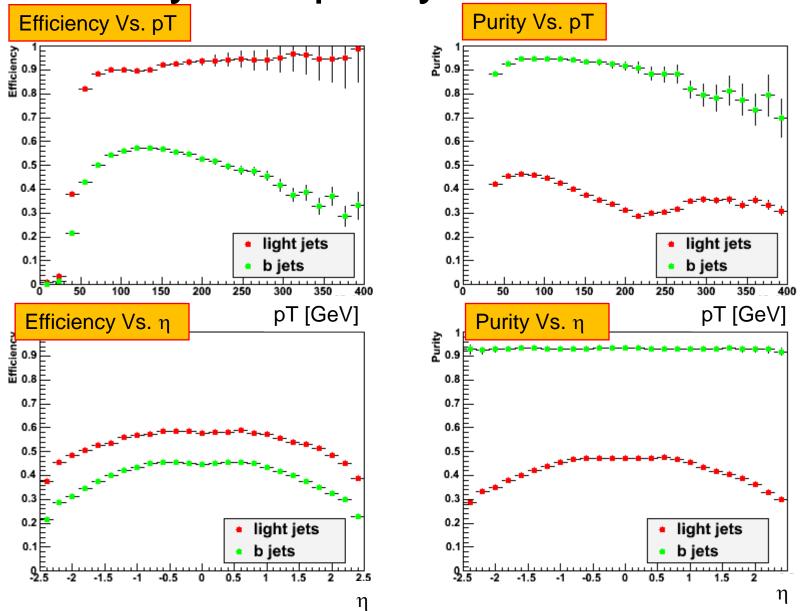
200

0.95

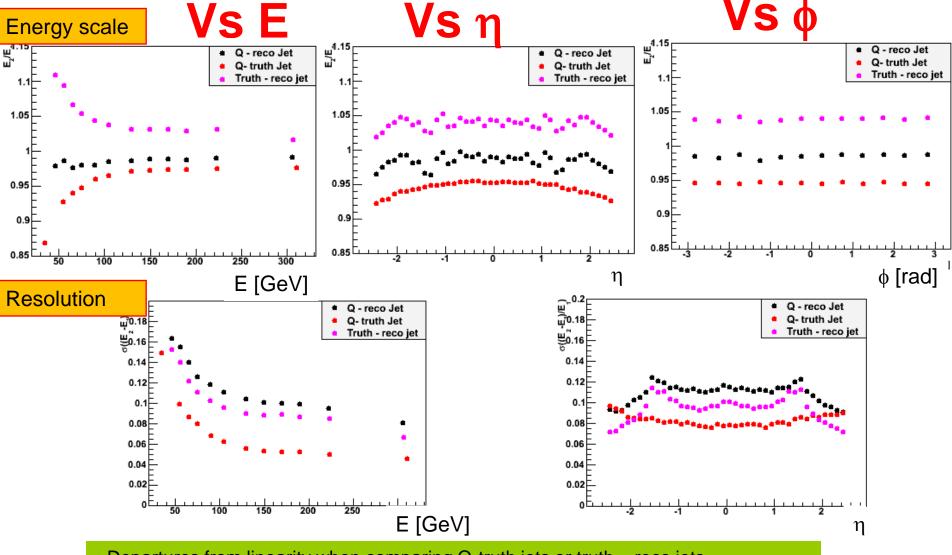

300

250 Energy_{Jet} (Ge**V**)

Jets reconstruction performance


Once jets are pre-calibrated, ...

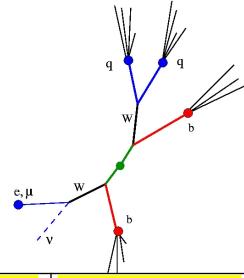
Efficiency and purity


- Efficiencies are higher when comparing quarks-truth jets.
- Purity is near 1 when comparing truth and reco jets; while the others are lower due to effects of the hadronization.

25

• Efficiency is higher for light jets than for b-jets while the purity is lower.

Linearity, uniformity and resolution



- Departures from linearity when comparing Q-truth jets or truth reco jets.
- After jet calibration (from reco jets to quarks) the linearity is near 1; although there is still room for improving calibration.
- Resolution increases for higher energies and is worse when comparing Q-reco jets.

Event selection

• Semi-leptonic channel (electron, muons or taus decaying leptonically + jets), :

- 1 lepton (e or μ) isolated, $P_T > 25$ (20) GeV, $|\eta| < 2.5$
- MET> 20 GeV
- Jet energy calibration
- Jets selection
 - \Rightarrow 24 jets, p_T > 40 GeV, $|\eta|$ < 2.5
 - → 2 of the jets tagged as b-jets

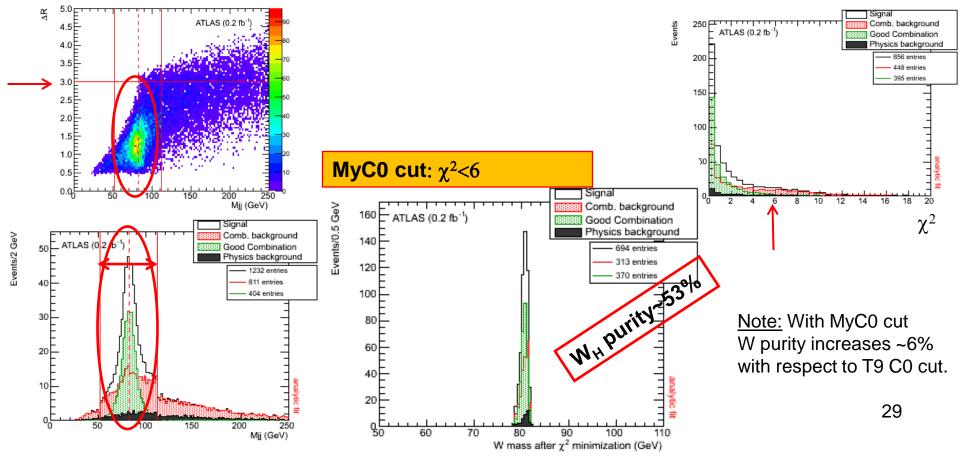
L=200 pb⁻¹ @ 10 TeV

Process	Number of events	1 isolated lepton pT>20(25) GeV	MET>20 GeV	>= 4 jets pT>40 GeV	= 2b-jets pT>40 GeV
Signal	27832	14685 (53%)	13139 (47%)	4986 (18%)	1207 (4%)
Di-leptonic	8882	4317 (49%)	4062 (46%)	645 (7%)	174 (2%)
τ (hadronic decay)+jets	7698	43 (0.6%)	40 (0.5%)	10 (0.14%)	2 (0.02%)

- About 4 % of the signal events pass all cuts
 (similar to the result obtained with TopView ntuples @ 14 TeV).
- Acumultaive efficiencies after each cut are shown.

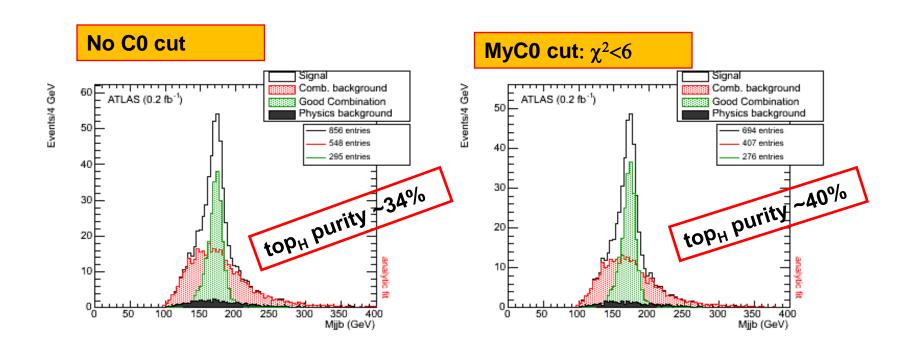
Top mass determination

- Hadronic W mass reconstruction
- Hadronic b-jet association
- Leptonic W mass reconstruction
- Leptonic b-jet association
- Kinematic fit (global χ^2) using selected candidates


Hadronic W mass reconstruction

Reconstruct the hadronic W boson using a χ^2 :

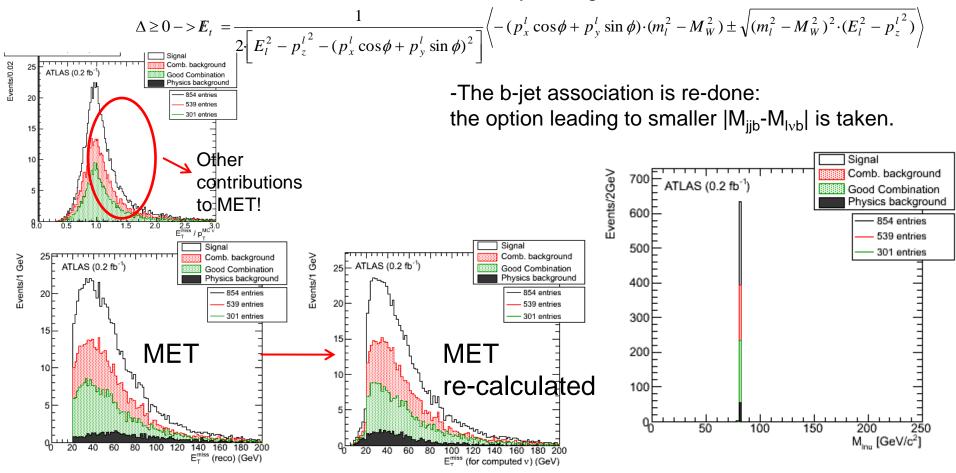
- If $N_{\text{iets}} > 2 \rightarrow \text{pair with } \chi_{\text{min}}^2 \text{ is kept}$
- $\Delta R(j_1,j_2)<3$ (purity increases ~5%)
- |M_{ii}-82| < 30 GeV
- Fit parameters: \mathbf{M}_{jj} , α_{Ej1} , α_{Ej2}
- After χ^2 minization, only events with χ^2 <6 are kept [MyC0 cut]


$$\chi^{2} = \left(\frac{M_{jj}(\alpha_{E_{j1}}, \alpha_{E2}) - M_{W}^{PDG}}{\Gamma_{W}^{PDG}}\right)^{2} + \left(\frac{E_{j1}(1 - \alpha_{E_{j1}})}{\sigma_{1}}\right)^{2} + \left(\frac{E_{j2}(1 - \alpha_{E_{j2}})}{\sigma_{2}}\right)^{2}$$

** The resolutions σ_1 and σ_2 ($\sigma(E_{jet} - E_{quark})$) are extracted from MC (see back-up slides).

Hadronic top mass reconstruction

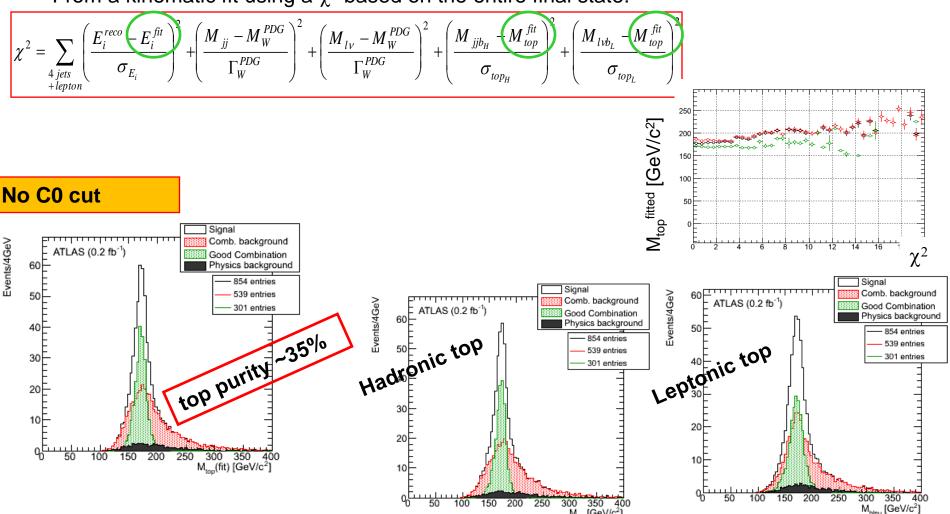
 Once the hadronic boson is reco, it is associated to the closest b-jet and the hadronic top is then reconstructed. (The remaining b-jet and the leptonic W boson then define the leptonic top quark).



Leptonic W mass reconstruction

- The difficulty comes from the kinematics of the neutrino
- MET measurement is used as an estimate of the neutrino $\mathbf{p}_{\mathsf{T}^{\mathsf{v}}}$ (assuming Et in CM is zero)
- The $\mathbf{p}_{\mathbf{z}}^{\mathbf{v}}$ is obtained using the known W mass and four-momentum conservation:

$$p_{z}^{v} = \frac{1}{2 \cdot (E_{l}^{2} - p_{z}^{l^{2}})} \left\langle p_{z}^{l} \left[2(p_{x}^{l} \mathbf{E}_{t} \cos \phi + p_{y}^{l} \mathbf{E}_{t} \sin \phi) - m_{l}^{2} + M_{W}^{2} \right] \pm \sqrt{E_{l}^{2} \left[(2p_{x}^{l} \mathbf{E}_{t} \cos \phi + 2p_{y}^{l} \mathbf{E}_{t} \sin \phi - m_{l}^{2} + M_{W}^{2})^{2} - 4\mathbf{E}_{t}^{2} (E_{l}^{2} - p_{z}^{l^{2}}) \right]} \right\rangle$$


• If discriminant Δ is <0, the MET is re-calculated by finding which MET value makes $\Delta \ge 0$:

Fitted top mass

(like in ATL-PHYS-INT-2008-021 note).

• From a kinematic fit using a χ^2 based on the entire final state:

^{*} The resolutions functions are extracted from MC by fitting the distributions E_{reco} - E_{truth} or E_{jet} – E_{quark} as a function of E_{reco} or E_{jet} with a polynomial (3rd degree) for 5 η regions (back-up slides). * σ_{topH} and σ_{topL} are the widhts of mass distributions, fixed to 10 and 15 GeV respectively

Conclusions

- The analysis code has been modified to read both TopView ntuples (to compare with CSC results) and D3PDs.
- D3PDs are produced from AODs in Athena (ARATopQuarkAnalysis) using the Grid (Ganga).
- Only dataset 105200 has been studied so far which includes signal events and ttbar dileptonic and tttbar τ (hadronic decay)+jets backgrounds. Need to look to others backgrounds.
- The performance of the reconstruction of final state objets of the semi-leptonic channel: electrons, muons, jets and missing Et has been studied using MC08.
- Energy resolutions have been provided for leptons and jets, in order to use them in the χ^2 function used to determine the top mass. For jets, a calibration to correct reconstructed jets energy to parton level has been provided.
- First look at kinematic fit results leads to reasonable results.

ToDo:

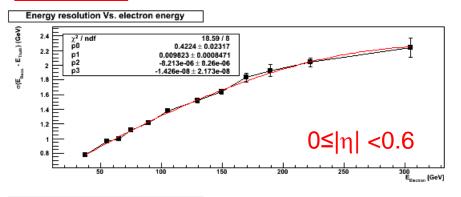
- take into account trigger information
- tune jet calibration
- improve the fits M_W and M_{top}
- apply others cuts to increase top purity
- study contribution from others backgrounds
- estimate systematic uncertainties

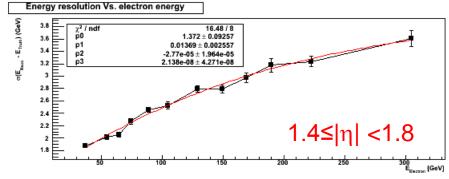
BACK-UP SLIDES

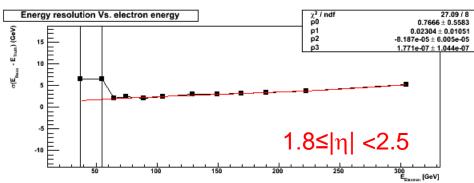
Leptonic W mass reconstruction

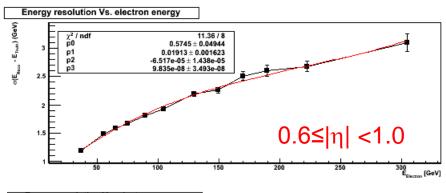
Reconstruct the leptonic W boson using MET measurement as an estimate of the neutrino pT.

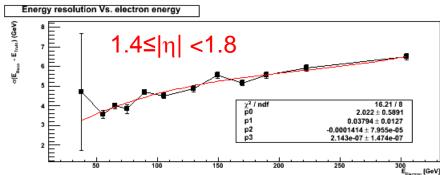
$$\begin{split} M_W^2 &= m_l^2 + 2E_l \sqrt{(p_x^v)^2 + (p_y^v)^2 + (p_z^v)^2} - 2(p_x^l p_x^v + p_y^l p_y^v + p_z^l p_z^v) = m_l^2 + 2E_l \sqrt{E_l^2 + (p_z^v)^2} - 2(p_x^l E_l \cos\phi + p_y^l E_l \sin\phi + p_z^l p_z^v) \\ M_W^2 &= m_l^2 + 2E_l \sqrt{(p_x^v)^2 + (p_y^v)^2 + (p_y^v)^2} - 2(p_x^l p_x^v + p_y^l p_y^v + p_z^l p_z^v) = m_l^2 + 2E_l \sqrt{E_l^2 + (p_z^v)^2} - 2(p_x^l E_l \cos\phi + p_y^l E_l \sin\phi + p_z^l p_z^v) \\ &- > 2E_l \sqrt{E_l^2 + (p_z^v)^2} = 2p_z^l p_z^v + 2(p_x^l E_l \cos\phi + p_y^l E_l \sin\phi) - m_l^2 + M_W^2 \\ &- > 4E_l^2 \left[E_l^2 + (p_z^v)^2 \right] = \left[2p_z^l p_z^v + 2(p_x^l E_l \cos\phi + p_y^l E_l \sin\phi) - m_l^2 + M_W^2 \right]^2 \\ &- > (4E_l^2 - 4p_z^{l^2})(p_z^v)^2 - 4p_z^l \left[2(p_x^l E_l \cos\phi + p_y^l E_l \sin\phi) - m_l^2 + M_W^2 \right] p_z^v - \left[2(p_x^l E_l \cos\phi + p_y^l E_l \sin\phi) - m_l^2 + M_W^2 \right]^2 + 4E_l^2 E_l^2 = 0 \\ &- > (E_l^2 - p_z^{l^2})(p_z^v)^2 - p_z^l \left[2(p_x^l E_l \cos\phi + p_y^l E_l \sin\phi) - m_l^2 + M_W^2 \right] p_z^v - \left[2(p_x^l E_l \cos\phi + p_y^l E_l \sin\phi) - m_l^2 + M_W^2 \right]^2 / 4 + E_l^2 E_l^2 = 0 \end{split}$$

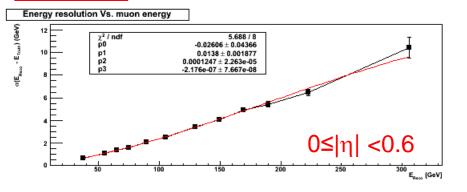

$$- > p_z^{v} = \frac{1}{2 \cdot (E_l^2 - p_z^{l^2})} \left\langle p_z^{l} \left[2(p_x^{l} \mathbf{E}_t \cos \phi + p_y^{l} \mathbf{E}_t \sin \phi) - m_l^2 + M_w^2 \right] \pm \sqrt{E_l^2 \left[(2p_x^{l} \mathbf{E}_t \cos \phi + 2p_y^{l} \mathbf{E}_t \sin \phi - m_l^2 + M_w^2)^2 - 4\mathbf{E}_t^2 (E_l^2 - p_z^{l^2}) \right]} \right\rangle$$

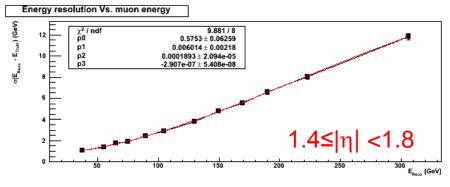

If discriminant is <0,
 the MET is re-calculated by finding which MET value makes the discriminant >=0
 And that new value is taken as estimate of pnux and pnuy.

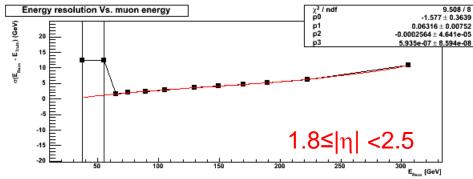

$$\begin{split} &\left[(2p_{x}^{l}E_{t}\cos\phi + 2p_{y}^{l}E_{t}\sin\phi) - m_{l}^{2} + M_{w}^{2} \right]^{2} - 4E_{t}^{2}(E_{l}^{2} - p_{z}^{l^{2}}) = 0 \\ &- > E_{t}^{2} \cdot \left[(2p_{x}^{l}\cos\phi + 2p_{y}^{l}\sin\phi)^{2} - 4(E_{l}^{2} - p_{z}^{l^{2}}) \right] + E_{t} \left[2(2p_{x}^{l}\cos\phi + 2p_{y}^{l}\sin\phi) \cdot (-m_{l}^{2} + M_{w}^{2}) \right] + (-m_{l}^{2} + M_{w}^{2})^{2} = 0 \\ &- > E_{t}^{2} \cdot \left[- (p_{x}^{l}\cos\phi + p_{y}^{l}\sin\phi)^{2} + E_{l}^{2} - p_{z}^{l^{2}} \right] + E_{t} \left[(p_{x}^{l}\cos\phi + p_{y}^{l}\sin\phi) \cdot (m_{l}^{2} - M_{w}^{2}) \right] + (m_{l}^{2} - M_{w}^{2})^{2} / 4 = 0 \\ &E_{t} = \frac{1}{2 \cdot \left[E_{l}^{2} - p_{z}^{l^{2}} - (p_{x}^{l}\cos\phi + p_{y}^{l}\sin\phi)^{2} \right]} \left\langle - (p_{x}^{l}\cos\phi + p_{y}^{l}\sin\phi) \cdot (m_{l}^{2} - M_{w}^{2}) \pm \sqrt{(m_{l}^{2} - M_{w}^{2})^{2} \cdot (E_{l}^{2} - p_{z}^{l^{2}})} \right\rangle \end{split}$$

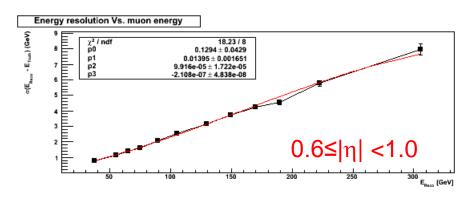

35

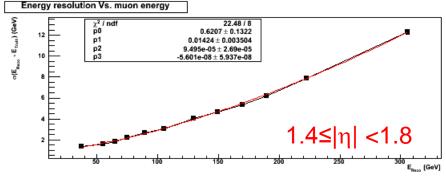

Electrons

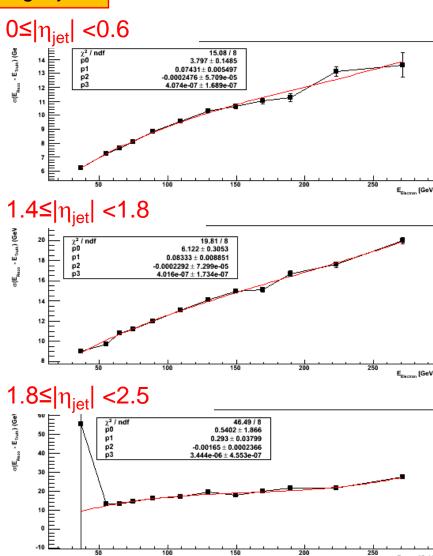


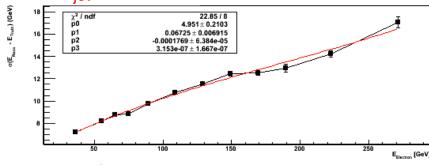


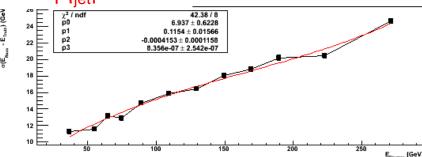


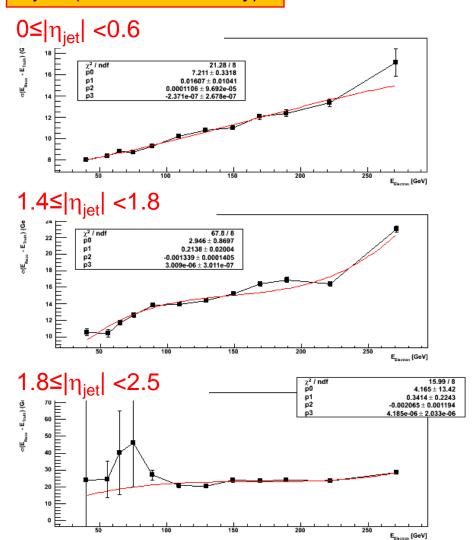


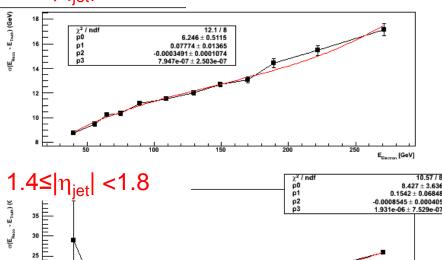

Muons

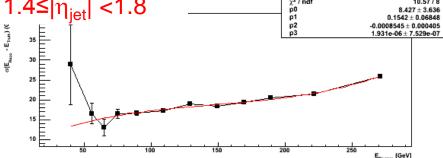





Light jets







b jets (non muonic decay)

$0.6 \le |\eta_{\text{jet}}| < 1.0$

