High precision energy calibration with resonant depolarization at VEPP-4M collider

V.E. Blinova,b,c, A.V. Bogomyagkova,b, V.P. Cherepanovb, V.A. Kiseleva, E.B. Levicheva,c, S.I. Mishneva, A.I. Mikaiylova, N.Yu. Muchnoia,b, S.A. Niktina, I.B. Nikolaeva,b, D.M. Nikolencoa, K.Yu. Todysheva,b, D.K. Toporkova, G.M. Tumaikina, A.G. Shamova,b, E.I. Shubina, V.N. Zhilicha,b,

aBudker Institute of Nuclear Physics, Novosibirsk, Russia
bNovosibirsk State University, Novosibirsk, Russia
cNovosibirsk State Technical University, Novosibirsk, Russia

Abstract

At the VEPP-4M collider the record accuracy of 10^{-6} of an absolute beam energy calibration was achieved with the resonant depolarization technique in the energy range including the J/ψ, $\psi(2S)$, $\psi(3770)$ resonances as well as the τ - lepton production threshold. This report discusses the methods, equipments and results.

Keywords: VEPP-4M, KEDR, resonance depolarization, Touschek polarimeter, Compton backscattering, beam energy measurement

1. Introduction

VEPP-4M is a 366 m mono-ring collider with "two on two" electron and positron colliding bunches with four interaction points (Fig. 1) \cite{1}. Three of them are parasitic ones where electrostatic separation of electron and positron orbits is applied. Collider ring is a part of the VEPP-4 complex which includes also the Injector facility with the booster storage ring VEPP-3. VEPP-4M is designed for the center-of-mass energy range from 2 up to 10 GeV with the universal magnetic detector KEDR \cite{2}.

The program of the detector is focused on the study of ψ, Υ- mesons and $\gamma\gamma$- physics. Since 2002 the goal of the first series of the experiments was the precise mass measurements of J/ψ, $\psi(2S)$- \cite{3}, $\psi(3770)$-\cite{4}, D- \cite{5} mesons and τ lepton \cite{6}. Similar experiments are important because they test theoretical models and establish the bench marks on the mass scale of elementary particles as well as on the energy scale of a given collide. Also the data on masses help in an absolute calibration of momentum measurements in detector tracking systems.

In our experiments the resonant depolarization technique (RD) was applied for precise beam energy calibration. This report discusses the methods, equipments and results.

2. Energy measurement methods at VEPP-4M

2.1. Resonant depolarization

Methodological support of physical experiments on VEPP-4 is maintained at a high level. The most precise method of the absolute measurement of the mean energy of particles in VEPP-4 is based on the resonant depolarization technique (RD) which was proposed and implemented for the first time in BINP \cite{7}. This ap-
proach was widely used thereafter both at the BINP and in other laboratories throughout the world.

In an ideal storage ring with the planar orbits, the average energy of electrons in a beam E is related to the average spin precession frequency Ω by the simple equation:

$$E = mc^2\gamma = mc^2 \cdot q_0 \left(\frac{\Omega}{\omega_0} - 1 \right) = 440.64843(3) \cdot \nu [\text{MeV}],$$

with q' and q_0, the anomalous and normal parts of the gyromagnetic ratio; ω_0, the revolution frequency; $\nu = \gamma q'/q_0$, the spin tune parameter. Limiting accuracy of the energy determination by the spin frequency $\delta E/E \approx 7.8 \cdot 10^{-8}$ is due to errors in knowledge of the fundamental constants. To measure Ω one needs to have a polarized beam in a storage ring, a system to observe the beam polarization as well as a system for enforced beam depolarization at the external spin resonance.

A state of the VEPP-4M beam polarization at energies up to 2 GeV is observed by comparison of the Touschek electron/positron counting rate from the polarized and unpolarized bunches separated by a half turn (the "two bunch" method) [8]. It allows to significantly diminish the systematic errors related to variations of the beam lifetime and beam sizes. The system of scintillation counters installed at several azimuths and put into the dynamic aperture provides a total counting rate $\sim 250 \text{ kHz/mA}^2$ at the distance of counters to the beam orbit $\approx 1 \text{ cm}$. The relative counting rate experiences a jump $\sim 1\%$ at the moment of depolarization proportional to squared level of polarization.

The two matched striplines of the VEPP-4 kicker are used to create a TEM wave propagating towards the beam. The signal source is a computer controlled frequency synthesizer [8]. The reference frequency signal for the synthesizer as well as for the VEPP-4M RF system is generated by the rubidium frequency standard (10^{-10}). Scan rate and the TEM wave amplitude are tuned to provide the depolarization time ~ 1 second. Typical behavior of the measured effect in a time and the depolarization jump are shown in Fig. 2.

An absolute energy calibration accuracy by the RD method is of a record level: $\delta E/E \sim 10^{-6}$. It is determined by the spin tune spread $\delta \nu/\nu \sim 5 \cdot 10^{-7}$ due to quantum diffusion of particle trajectories in the presence of a quadratic non-linearity of the VEPP-4M guide field. To date more than 3500 RD calibrations has been performed.

2.2. CBS beam energy monitor

The instantaneous energy of a beam is measured by the RD method. But our measurements show that the VEPP-4M energy can vary in 1 day within a range of several tens of kiloelectron-volts, i.e., by a value of more than 10^{-5}. It is connected with both the magnetic cycles and the temperature instability of the ring (daily and seasonal). For monitoring the beam energy in the experiment with the accumulation of statistical data in the KEDR detector of VEPP-4M, as well as in some experiments at the Deuteron facility (VEPP-3), the method of Compton back scattering (CBS) is used. First beam energy measurements based on CBS was made at the
BESSY-I and BESSY-II SR storage rings in Berlin. In 2005 this method was realized at VEPP-4M, for the first time for colliders [9]. Since then, it is a routine instrument for monitoring the VEPP-4M beam energy. At $E \leq 2$ GeV it was achieved a record accuracy about $5 \cdot 10^{-5}$ in determination of the energy by this method for a half hour of scattered photon statistics acquisition. The method consists in measurement of the CBS spectrum edge (ω_{max}) related to the electron beam energy:

$$E = \frac{\omega_{\text{max}}}{2} \left(1 + \sqrt{1 + \frac{m^2}{\omega_{\text{inc}} \omega_{\text{max}}}} \right),$$

ω_{inc} is the incident photon energy. The infrared CO$_2$ laser with the wave length 10.6 μm and 50 W CW power is used for radiation generation. The laser spot size in the interaction area is approximately 10 times larger than the electron beam horizontal transverse size to provide a correct measurement of average beam energy. Maximal energy of γ-quanta scattered towards the High Purity Germanium (HPGe) detector lies in the range 4-6 MeV. At first, the available γ-ray sources provided the HPGe energy scale calibration only in the 0.5 - 3 MeV range. Calibration at the 6000 keV edge was made by extrapolation of the low energy data or using RD data of the VEPP-4M energy. Extrapolation gave ~ 100 keV difference between CBS and RD energy measurements. At present, we have the 6.13 MeV γ-quanta source in conjunction with a precise pulse generator. It solves a problem of the independent energy scale calibration. In Fig.3 the experimental spectrum is shown with the fitting applied to its edge. The “edge place” parameter is determined with a relative statistical accuracy $< 3 \cdot 10^{-5}$, while the “edge width” parameter has a statistical uncertainty of about 3%. These parameters together with the energy scale calibration are used to obtain the on-line data of the VEPP-4M beam energy and beam energy spread.

The example of joint energy measurements by the RD and CBS methods performed during the tau mass measurement experiment is shown in Fig. 4.

3. Beam polarization

In the beam energy range $1.5 \div 1.9$ GeV the VEPP-3 booster storage ring serves as a source of polarized particles for the VEPP-4M collider. The energy scaling of the radiative polarization time in VEPP-3 and VEPP-4M as well as the values of this parameter at two characteristic energies are presented in Tab.1. There is no possiblity to obtain the polarization directly in the collider at the mentioned energies. In the case of injection of the polarized beam from the booster a positive fact is a large radiative relaxation time of the depolarization processes related to the VEPP-4M field imperfections. Using the new method [10] developed by us and based on measuring the asymmetry in scattering of polarized beam electrons on the internal target of the collider at the mentioned energies. In the case of injection of the polarized beam from the booster a positive fact is a large radiative relaxation time of the depolarization processes related to the VEPP-4M field imperfections. Using the new method [10] developed by us and based on measuring the asymmetry in scattering of polarized beam electrons on the internal target of the collider at the mentioned energies.

![Figure 3: Fragment of the energy spectrum of backscattered photons measured by the HPGe detector.](image)

![Figure 4: Joint energy measurements with RD and CBS in 2006 April runs.](image)
there is no problems with obtaining the polarization in VEPP-3. During the radiative polarization process the special system automatically controls the VEPP-3 betatron tune working point keeping it far enough from the dangerous combination spin resonances. In practice, the time spent for polarization is noticeably less than 2.5\(\tau_p\) (see Tab.1) and makes up 5000 s and 2000 s at 1.55 GeV and 1.85 GeV respectively. Resulting polarization extent is still sufficient for precise energy calibration with the RD technique.

The vertical spin projection of polarized positrons injected at 1.85 GeV is 1.5 times less than that of electrons (having the analogous projection close to 1). It gives a design decrease of depolarization jump in the RD technique by a factor of 2.5. With the aim to eliminate this defect we installed and applied the 2.5 T·m pulse solenoid at the VEPP-3-VEPP-4M beam-line section before the outlet 90° bend magnets. As result, the depolarization jump for positrons increased by a factor 2. This contributed to improvement of an accuracy in the electron-positron energy gap measurement (\(\sim 1\) keV) which is important for the systematic error study.

Table 1: The Sokolov-Ternov polarization time.

<table>
<thead>
<tr>
<th>Ring</th>
<th>VEPP-3</th>
<th>VEPP-4M</th>
</tr>
</thead>
<tbody>
<tr>
<td>Scaling with Beam Energy ((\tau_p[h], E[GeV]))</td>
<td>(\tau_p = \frac{12}{E^5})</td>
<td>(\tau_p = \frac{1540}{E^5})</td>
</tr>
<tr>
<td>(\tau_p@1.55\text{ GeV})</td>
<td>1.34 h</td>
<td>172 h</td>
</tr>
<tr>
<td>(\tau_p@1.85\text{ GeV})</td>
<td>33 min</td>
<td>70 h</td>
</tr>
</tbody>
</table>

Figure 6: Construction of the Touschek polarimeter insertion with scintillator counters and depolarizer plates.

4. Touschek polarimeter

There are three Touschek polarimeter insertions at the VEPP-4M ring. The transverse cross-section of the vacuum chamber in one of these insertions containing the scintillation counters and depolarizer plates is shown in Fig. 6. Scintillation counters can be moved towards a beam orbit with the help of stepper motors. The shown Touschek insertion is arranged at the VEPP-4M technical section. Two more TEM wave-based depolarizers and two scintillation counter pairs are used separately at different azimuths of the ring in the experimental hall.

The plot in Fig. 7 demonstrates the calculated and measured dependences of counting rate on a distance from the counter to orbit position. We measured the Touschek counting rate in a wide range of VEPP-4M energy (Fig. 8). The resulting energy dependence normalized on a beam volume and a square of bunch current differs a little from the theoretical one \(\propto E^{-3}\) in the power index. The assumed reasons of this discrepancy are inhomogeneity of the experimental conditions with changing energy and uncertainty in definition of the effective beam angular spread [11].

Also we experimentally studied a behavior of depolarization jump magnitude with changing betatron coupling in comparison with the theoretical calculations [11] (Fig. 9). According to our estimate the depolarization effect in the counting rate of the Touschek particles decreases with an increase of the energy as \(E^{-4}\). Because of a slump in the counting rate and depolarization jump the Touschek polarimeter becomes non-relevant at the VEPP-4M energies above 4 GeV.
Table 2: Operation modes of the depolarizer. "CLUB": quick energy calibrations in regions of a resonance substructure. "J/ψ": most precise calibrations in narrow resonance peaks. "CPT": a precise comparison of the spin frequencies of electron and positron. W_k is the resonant harmonic amplitude [12] of a perturbation generated by the depolarizer; dE/dt is the scan rate; σ_E is the dynamic widening of the depolarizer line; ΔE is the spin frequency resolution.

<table>
<thead>
<tr>
<th>Type</th>
<th>W_k</th>
<th>dE/dt, keV/sec</th>
<th>σ_E, keV</th>
<th>ΔE, keV</th>
<th>Relative width σ_d / σ_s</th>
</tr>
</thead>
<tbody>
<tr>
<td>"CLUB"</td>
<td>10^{-6}</td>
<td>10</td>
<td>2.1</td>
<td>10</td>
<td></td>
</tr>
<tr>
<td>"J/ψ"</td>
<td>$5 \cdot 10^{-7}$</td>
<td>0.3</td>
<td>0.4</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>"CPT"</td>
<td>$4 \cdot 10^{-8}$</td>
<td>0.005</td>
<td>0.05</td>
<td>0.002</td>
<td></td>
</tr>
</tbody>
</table>

Figure 7: (1) Measured and (2,3) calculated counting rates of the scintillation counter versus the distance between the counter and beam orbit (A). The parameters of calculation are the 1.1% energy aperture and the betatron coupling coefficient (the ratio of the vertical and horizontal emittances) of $\epsilon_v/\epsilon_r = 0.033$ (the curve 2) and $= 0.028$ (the curve 3). The parameters of the experiment are $E = 1.55$ GeV and the beam current $I = 3.0 \rightarrow 2.8$ mA.

5. Tuning of depolarizer

Efficiency of depolarizer is determined through the so-called spin response factor [12] which depends on azimuth of its location and beam energy and can vary through several orders (Fig.10). This fact influences on a choice of a depolarizer arrangement (compare the factor values of two kickers at different azimuths in Fig.10). Also the efficiency depends on a rate of frequency scan. Accurate tuning of depolarizer is important because of a danger of the spin sideband resonances $\nu + l \cdot \nu_H \pm \nu_d = k$ related to the guide field ripples $H = \bar{H} + \Delta H \cos \nu_H \theta$ (ν_d is the depolarizer frequency in the units of ω_0). The 50 Hz ripples at $\Delta H/H = 20$ ppm can lead to a systematic error of 1.5×10^{-5} ($E = 1.85$ GeV) in energy determination because of small difference between the depolarization rates at the first modulation and main external spin resonances (see Fig.11) [13]. To avoid the error caused by depolarization at the modulation spin resonances we thoroughly calculate the depolarizer efficiency and properly tune the scan mode. In practice, we suppressed the ripples in the VEPP-4M field to below a 10 ppm level that yields $\tau^{(1)}/\tau_0 \approx 8$. For comparison, at the hypothetical FCC storage ring with a 90 km perimeter the 50 Hz ripples at $E = 45$ GeV mean a significant systematic error of 6.5 MeV (1.45×10^{-4}) which nevertheless is unlikely to be admitted because of too much assumed ratio $\tau^{(1)}/\tau_0 \approx 10^3$ at $\Delta H/H \sim 10$ ppm.

The table illustrates three main scan modes we use. Interesting detail is seen in the scan(Fig.12) with highest resolution in depolarization frequency (2×10^{-9}) [14, 15]. Width of a long-drawn depolarization jump corresponds to an own spin line width in a beam estimated as 5×10^{-7}.

The experiment on the thrice repeated partial depolar-
Figure 9: Calculated jump versus the "inverse" coupling parameter $k = \sqrt{E/E_0}$ for two polarization degrees at $E = 1.85$ GeV. The points are the measured values of the depolarization effect.

Figure 10: Spin Response Function F' for $E = 1548$ MeV (left) and $E = 1843$ MeV (right) versus the VEPP-4M azimuth [13]. The rate of resonant depolarization is $\tau_d^{-1} \propto F'^2$. At one passage of the depolarizer the spin rotation angle is φ_\perp. Spin Response Function F' takes into account a depolarization effect of vertical betatron oscillations exited by the depolarizer kick. In different cases $|F'|^2$ may be < 1 or achieve $> 10^2$ and more.

Figure 11: Ratio of the depolarization times at the first modulation and main spin resonances ($l = 1$ and $l = 0$) versus the relative amplitude of the 50 Hz guide field ripples.

Figure 12: Depolarization process at fine scanning with a rate of 2.5 eV/s and with a depolarization frequency resolution of 2×10^{-9} Hz. The depolarization jump is "long-drawn" due to the sensitivity of fine scanning to the spin frequency spread of 5×10^{-7} in a beam.

6. Accuracy and stability

Questions of accuracy concern the determination of the mean energy of each of colliding beams, the determination of the center-of-mass energy as well as the energy stability. Various sources of systematic errors listed here were analyzed [16, 17, 18, 197].

- Groups of error sources:
 - a mean energy value determination basing on a measured spin frequency;
 - an energy stability in time domains between energy calibrations;
 - determination of the produced particles energy in a Center-of-Mass system basing on an energy of one of colliding beams measured with RD.

- Methods of accounting:
 - correction of measurement data;
 - declaration of uncertainty.

- Sources of errors:
 - radial orbit distortions (non-stability of currents in magnet coils, temperature variations, geomagnetic storms, solar and lunar daily geomagnetic variations etc);
 - vertical orbit bumps at the sections without bend magnets;
 - a violation of the simple energy-spin tune relation (the random perturbations of vertical orbit, the weak longitudinal magnetic fields, the vertical orbit bumps at the sections with bend magnets);
 - an azimuthal dependence of beam energy due to radiative losses;
 - effect of beam parameters in IP (a momentum
spread, an inaccurate colliding beam convergence, a parasitic vertical dispersion, the VEPP-4M Final Focus (FF) chromaticity, a beam potential etc).

In the beginning of our experiments with RD we revealed significant daily energy oscillations (Fig.14) which were diminished by an order later on. Inaccurate compensation of the longitudinal magnetic field of the KEDR detector can lead to significant error in energy determination by spin frequency. We measured the dependence of the spin tune shift on the anti-solenoid current. In minimum it yields an optimal ratio of the main and compensating fields of the detector (Fig.15). Thus the betatron coupling (down to \(\sim 1\% \) in the anti-solenoid current) and the systematic energy error (down to \(\sim 1 \) keV) are minimized.

Special experiments on the distinct-in-time comparison of electron and positron energies (Fig.16) as well as on the simultaneous measurements of these beams energies demonstrated that a difference between electron and positron energies makes up a value of the order of 1 keV due to electrostatic orbit separation in parasitic IPs in accordance with estimates.

7. Mass measurements at VEPP-4M

The VEPP-4 Complex has most rich history of mass measurement experiments in comparison with other laboratories (Tab.3). In the new series of such experiments at the modernized collider VEPP-4M an acuracy of the mass measurement of the charmed mesons \(J/\psi \) and \(\psi(2S) \) was improved in several times. Masses of only the five elementary particles are known with less uncertainties at present (Tab.4).

Tau lepton mass measurement was performed at energies in vicinity of the tau production threshold where
8. Summary

Since 2002 we have performed a series of mass measurement experiments with KEDR detector using RD technique for absolute beam energy calibration with 10^−6 accuracy. Masses of J/ψ, ψ(2S) (the best accuracy); D^0 (the second result after CLEO); D^+ (the best direct measurement), tau-lepton (the best result at present) have been measured. News were application of CBS for monitoring the energy (50-100 keV) between RD calibration and the energy spread (7-10%) in these experiments. Touschek polarimeter used for RD at VEPP-4M works very well at E < 2 GeV but will be rather not effective at E > 4 GeV because of considerable decrease of effect and counting rate with energy (We consider laser polarimeter as alternative for possible mass measurements in the range of τ resonance family).

References

