$D^0 - \bar{D}^0$ mixing and CP violation results from Belle

N.K. Nisar

TIFR Mumbai

July 4, 2014
Outline

1 Introduction
 - Neutral D meson system
 - D^0-\bar{D}^0 mixing
 - CP violation
 - Experimental methods

2 Mixing in $D^0 \rightarrow K^+\pi^-$

3 Mixing in $D^0 \rightarrow K_S^0\pi^+\pi^-$

4 CP asymmetry in $D^0 \rightarrow \pi^0\pi^0$

5 Summary
Neutral D meson system

- The time evolution is given by

\[i \frac{d}{dt} \left(\left| D_0^0(t) \right\rangle \right) = \underbrace{\left(M - \frac{i}{2} \Gamma \right)}_{\mathcal{H}} \left(\left| D_0^0(t) \right\rangle \right) \]

- Mass eigenstates are different from the flavor eigenstates

\[|D_{H,L}\rangle = p |D^0\rangle \pm q |\bar{D}^0\rangle \quad \text{(eigenstates of } \mathcal{H}) \]

\[|D_{H,L}\rangle \text{ are mass eigenstates with masses } m_H, m_L \text{ and widths } \Gamma_H, \Gamma_L \]

Solution:

\[|D^0(t)\rangle = e^{-(\Gamma/2+i m)t} [\cosh \left(\frac{y+ix}{2} \Gamma t \right) |D^0\rangle + \frac{q}{p} \sinh \left(\frac{y+ix}{2} \Gamma t \right) |\bar{D}^0\rangle] \]

\[|\bar{D}^0(t)\rangle = e^{-(\Gamma/2+i m)t} [\frac{p}{q} \sinh \left(\frac{y+ix}{2} \Gamma t \right) |D^0\rangle + \cosh \left(\frac{y+ix}{2} \Gamma t \right) |\bar{D}^0\rangle] \]

- Mixing parameters

\[x = \frac{m_H-m_L}{\Gamma}, \quad y = \frac{\Gamma_H-\Gamma_L}{2\Gamma} \]

\[\Gamma = \frac{\Gamma_H+\Gamma_L}{2}, \quad m = \frac{m_H+m_L}{2} \]
$D^0 - \bar{D}^0$ mixing

Since the mixing is very small in D^0 system, $|x|, |y| \ll 1$

$$|D^0(t)\rangle = e^{-(\Gamma/2+im)t}[|D^0\rangle + \frac{q}{p} (\frac{y+ix}{2}\Gamma t) |\bar{D}^0\rangle]$$

Time dependent decay rate for $D^0 \rightarrow f$:

$$\frac{d}{dt} (N_{D^0 \rightarrow f}) \propto |\langle f | \mathcal{H} | D^0(t) \rangle|^2 = e^{-\Gamma t} |\langle f | \mathcal{H} | D^0 \rangle + \frac{q}{p} (\frac{y+ix}{2}\Gamma t) \langle f | \mathcal{H} | \bar{D}^0 \rangle|^2$$

\Rightarrow exponential in lifetime, $\tau = 1/\Gamma$, modulated by x and y

Present mixing results on:

1. Wrong sign hadronic decays ($D^0 \rightarrow K^+\pi^-$)

 $x' = x \cos \delta_{K\pi} + y \sin \delta_{K\pi}$

 $y' = y \cos \delta_{K\pi} - x \sin \delta_{K\pi}$

2. Decays to a self-conjugate state ($D^0 \rightarrow K^0_S\pi^+\pi^-$)

 x, y, $|p/q|$ and $\text{arg}(p/q)$
\[
\frac{p}{q} = \left| \frac{p}{q} \right| e^{i\phi}
\]

1. \(\left| \frac{p}{q} \right| \neq 1 \Rightarrow \text{CP violation in mixing} \\
2. \(\phi \neq 0, \pi \Rightarrow \text{CP violation due to interference of decays with and without mixing} \\
3. |A(D^0 \to f)| \neq |A(\bar{D}^0 \to \bar{f})| \Rightarrow \text{Direct CP violation} \\

Present CPV results:

1. \(D^0 \to \pi^0\pi^0 \)
2. \(D^0 \to K_S^0\pi^+\pi^- \)

Indirect CPV
\[\frac{p}{q} = \left| \frac{p}{q} \right| e^{i\phi} \]

1. \[\left| \frac{p}{q} \right| \neq 1 \Rightarrow \text{CP violation in mixing} \]

2. \(\phi \neq 0, \pi \Rightarrow \text{CP violation due to interference of decays with and without mixing} \)

3. \[|A(D^0 \to f)| \neq |A(\bar{D}^0 \to \bar{f})| \Rightarrow \text{Direct CP violation} \]

- Present CPV results:
 1. \(D^0 \to \pi^0 \pi^0 \)
 2. \(D^0 \to K_S^0 \pi^+ \pi^- \)

Direct CPV
Experimental methods

1. **Flavor tagging**
 \[D^{*+} \rightarrow D^0 \pi^+ \]
 → Charge conjugation is applied throughout
 → Definition: \(\Delta M = m_{D^{*+}} - m_{D^0} \)

2. **Requirement on \(p^*(D^*) \)**
 - Suppresses \(D^* \) from \(B \) decays
 - Reduces combinatorial background significantly

3. **Measure the \(D^0 \) proper decay time**
 \[t = m_{D^0} \frac{l_{dec} \cdot \vec{p}_{D^0}}{|\vec{p}_{D^0}|^2} \]
$D^0 - \bar{D}^0$ mixing in $D^0 \rightarrow K^+\pi^-$ (976 fb$^{-1}$)

- Mixing

$D^0 \rightarrow \bar{D}^0$

$K^-\pi^+$

Right Sign (RS)

$D^0 \rightarrow \bar{D}^0$

CF

$K^+\pi^-$

Wrong Sign (WS)

DCS

- Time-dependent ratio of the WS to RS decay (no CPV, $|x|, |y| \ll 1$)

$$R(\tilde{t}/\tau) = \frac{\Gamma_{WS}(\tilde{t}/\tau)}{\Gamma_{WS}(\tilde{t}/\tau)} \approx \frac{\text{DCS}/\text{CF}}{R_D} + \sqrt{R_D} y' \left(\frac{\tilde{t}}{\tau} \right) + \frac{x'^2 + y'^2}{4} \left(\frac{\tilde{t}}{\tau} \right)^2$$

- We measure

$$R(t/\tau) = \frac{\int_{-\infty}^{+\infty} \Gamma_{WS}(\tilde{t}/\tau) \mathcal{R}(t/\tau - \tilde{t}/\tau) d(\tilde{t}/\tau)}{\int_{-\infty}^{+\infty} \Gamma_{RS}(\tilde{t}/\tau) \mathcal{R}(t/\tau - \tilde{t}/\tau) d(\tilde{t}/\tau)}$$

where, $\mathcal{R}(t/\tau - \tilde{t}/\tau)$, resolution function

- Proper decay time → convolution of an exponential with the resolution function

Events/(0.1 t/\tau)

N.K. Nisar (TIFR Mumbai) $D^0 - \bar{D}^0$ mixing and CP violation July 4, 2014 7 / 15
$D^0-\bar{D}^0$ mixing in $D^0 \rightarrow K^+\pi^-$ (976 fb$^{-1}$)

Stringent criteria on particle identification likelihood to reduce $K^-\pi^+$ misidentification

To estimate $R(t/\tau)$, we divide the sample into 10 bins of proper decay time and fit with

1. Mixing hypothesis (x', y' are free)
2. No mixing hypothesis ($x' = y' = 0$)

<table>
<thead>
<tr>
<th>Test hypothesis</th>
<th>Parameters</th>
<th>Fit results (10^{-3})</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mixing (4.2/7)</td>
<td>R_D</td>
<td>3.53±0.13</td>
</tr>
<tr>
<td></td>
<td>y'</td>
<td>4.6±3.4</td>
</tr>
<tr>
<td></td>
<td>x'^2</td>
<td>0.09±0.22</td>
</tr>
<tr>
<td>No mixing (33.5/9)</td>
<td>R_D</td>
<td>3.864±0.059</td>
</tr>
</tbody>
</table>

Observation of mixing with $>5\sigma$ significance
$D^0 \rightarrow K_S^0 \pi^+ \pi^-$ time-dependent Dalitz Analysis (921 fb$^{-1}$)

- Allows a direct measurement of x, y with a simultaneous search for CPV
- Study the distribution of events across the Dalitz plot (DP) as a function of the proper decay time
 \rightarrow DP variables $(m_+^2, m_-^2) = (m_{K_S^0 \pi^+}^2, m_{K_S^0 \pi^-}^2)$

- Dalitz model:
 $\pi^+ \pi^-$ S-wave: K-matrix model
 $K\pi$ S-wave: LASS model

- Decay time integrated fit to DP; keeping amplitudes and phases for intermediate states free, separately for D^0 and $\bar{D^0} \Rightarrow \bar{A}_f = A_{\bar{f}}$
$D^0 \rightarrow K_S^0 \pi^+ \pi^-$ time-dependent Dalitz Analysis (921 fb$^{-1}$)

- Time-dependent decay rates for D^0 and \bar{D}^0 decays to final state f as

\[
|\mathcal{M}(f, t)|^2 = \frac{e^{-\Gamma t}}{2} \left(|A_f|^2 + \left|\frac{q}{p}\right|^2 |A_{\bar{f}}|^2 \right) \cosh(\Gamma yt) \\
+ \left(|A_f| - \left|\frac{q}{p}\right| |A_{\bar{f}}| \right) \cos(\Gamma xt) \\
+ 2\Re \left(\frac{q}{p} A_f A_{\bar{f}}^* \right) \sinh(\Gamma yt) \\
- 2\Im \left(\frac{p}{q} A_f A_{\bar{f}}^* \right) \sin(\Gamma xt)
\]

\[
|\tilde{\mathcal{M}}(f, t)|^2 = \frac{e^{-\Gamma t}}{2} \left(|A_{\bar{f}}|^2 + \left|\frac{q}{p}\right|^2 |A_f|^2 \right) \cosh(\Gamma yt) \\
+ \left(|A_{\bar{f}}| - \left|\frac{q}{p}\right| |A_f| \right) \cos(\Gamma xt) \\
+ 2\Re \left(\frac{q}{p} A_{\bar{f}} A_f^* \right) \sinh(\Gamma yt) \\
- 2\Im \left(\frac{p}{q} A_{\bar{f}} A_f^* \right) \sin(\Gamma xt)
\]

- Signal yield 1231731 ± 1633 (purity 95.5\%) from a 2D fit to the $M - Q$ distribution

\[
M = M_{K_S^0 \pi^+ \pi^-} \\
Q = (M_{K_S^0 \pi^+ \pi^-} - m_{\pi_s}) c^2
\]

Signal region

| $M - m_{D^0}$ | < 15 MeV \\| 5.75 < Q < 5.95 MeV
Extraction of mixing parameters assuming CP is conserved:

- Keep following parameters free: x, y, τ_{D^0}, proper decay time resolution parameters and Dalitz model parameters.

\[
x = (0.56 \pm 0.19)^{+0.03+0.06}_{-0.09-0.09} \%
\]
\[
y = (0.30 \pm 0.15)^{+0.04+0.03}_{-0.05-0.06} \%
\]
\[
\tau_{D} = (410.3 \pm 0.6) \text{ fs}
\]

Extraction of CPV parameters:

- CPV parameters $|q/p|$ and $\text{arg}(q/p)$ are included in PDF.
- Values obtained for mixing parameters are identical to those from the CP-conserved fit.

\[
|q/p| = 0.90^{+0.16+0.05+0.06}_{-0.15-0.04-0.05}
\]
\[
\text{arg}(q/p) = (-6\pm11 \pm 3^{+3}_{-4})^\circ
\]
LHCb and CDF measured a large CP asymmetry difference between $D^0 \rightarrow \pi^+\pi^-$ and $D^0 \rightarrow K^+K^-$ decay, ΔA_{CP}

Isospin consideration relates ΔA_{CP} with the CP asymmetry in $D^0 \rightarrow \pi^0\pi^0$

The only existing measurement is from CLEO, $A_{CP} = (+0.1 \pm 4.8)\%$

PRD 63, 071101 (2001)
Time-integrated CP asymmetry in $D^0 \rightarrow \pi^0\pi^0$ (966 fb$^{-1}$)

- **CP asymmetry**
 \[
 A_{CP} = \frac{\Gamma(D^0 \rightarrow \pi^0\pi^0) - \Gamma(\bar{D}^0 \rightarrow \pi^0\pi^0)}{\Gamma(D^0 \rightarrow \pi^0\pi^0) + \Gamma(\bar{D}^0 \rightarrow \pi^0\pi^0)}
 = A_{CP}^d + A_{CP}^m + A_{CP}^i
 \]

- **Measure the reconstruction asymmetry in**
 $D^{*+} \rightarrow D^0(\pi^0\pi^0)\pi^+_s$
 \[
 A_{rec} = \frac{N_{rec}^{D^{*+}} - N_{rec}^{D^{*-}}}{N_{rec}^{D^{*+}} + N_{rec}^{D^{*-}}}
 = A_{CP} + A_{FB}(\cos \theta^*) + A_{\pi^s}
 \]

- **Detection efficiency asymmetry**: use self tagged decay mode, $D^0 \rightarrow K^-\pi^+$
 \[
 A_{rec}^{tag}(K\pi) = A_{CP} + A_{FB} + A_{\epsilon}^{K\pi} + A_{\pi^s}
 \]
 \[
 A_{rec}^{untag}(K\pi) = A_{CP} + A_{FB} + A_{\epsilon}^{K\pi}
 \]
 - done in 2d bins of $(p_T, \cos \theta)$
 - apply A_{π^s} correction in 2D bins for A_{rec}^{cor}

\[\text{N}(D^0/\bar{D}^0) = 34460 \pm 273\]
Time-integrated CP asymmetry in $D^0 \to \pi^0 \pi^0$ (966 fb$^{-1}$)

- Extraction of A_{CP} and A_{FB}
 - A_{FB} (asymmetry in the production of D^*) is an odd function of $\cos \theta^*$
 - A_{rec}^{cor} is divided into 10 bins of $\cos \theta^*$ while addition and subtraction of A_{rec}^{cor}'s with the same value of $|\cos \theta^*|$ give
 \[
 A_{CP} = \frac{[A_{rec}^{cor}(\cos \theta^*) + A_{rec}^{cor}(-\cos \theta^*)]}{2} \\
 A_{FB} = \frac{[A_{rec}^{cor}(\cos \theta^*) - A_{rec}^{cor}(-\cos \theta^*)]}{2}
 \]
 - $A_{CP}(\pi^0 \pi^0) = (-0.03 \pm 0.64 \pm 0.10)\%$
 - Also updated $A_{CP}(K_S^0 \pi^0) = (-0.21 \pm 0.16 \pm 0.07)\%$
First observation of D^0-\bar{D}^0 mixing in e^+e^- collision in the measurement of time-dependent ratio of WS to RS decay rates

\[x''^2 = (0.09 \pm 0.22) \times 10^{-3} \quad y' = (4.6 \pm 3.4) \times 10^{-3} \]
\[\Rightarrow \text{no mixing hypothesis is excluded at } 5.1\sigma \text{ level} \]

Updated measurement of D^0-\bar{D}^0 mixing in $D^0 \rightarrow K_S^0\pi^+\pi^-$

\[x = (0.56 \pm 0.19)\% \quad y = (0.30 \pm 0.15)\% \]
\[\Rightarrow \text{significance of mixing is estimated to be } 2.5\sigma \]
\[\Rightarrow \text{No evidence for CP violation in the decay} \]

Significantly improved measurement of time-integrated CP violating asymmetry A_{CP} in $D^0 \rightarrow \pi^0\pi^0$ and the result is consistent with no CPV

\[A_{CP}(\pi^0\pi^0) = (-0.03 \pm 0.64 \pm 0.10)\% \]
\[\Rightarrow \text{updated the existing measurement of CP asymmetry in } D^0 \rightarrow K_S^0\pi^0 \]
Backup
HFAG average for mixing

![Graph showing HFAG-charm results for mixing and CP violation from Belle]

July 4, 2014
$x'^{2}, \ y'$ measurement

Belle LHCb CDF BABAR

![Graph showing x'^{2} on the x-axis and y' on the y-axis with data points from Belle, LHCb, CDF, and BABAR.](image-url)
Resonances in $D^0 \rightarrow K^0_S \pi^+ \pi^-$

<table>
<thead>
<tr>
<th>Resonance</th>
<th>Amplitude</th>
<th>Phase (deg)</th>
<th>Fit fraction</th>
</tr>
</thead>
<tbody>
<tr>
<td>$K^*(892)^-$</td>
<td>1.590 ± 0.003</td>
<td>131.8 ± 0.2</td>
<td>0.6045</td>
</tr>
<tr>
<td>$K_0^*(1430)^-$</td>
<td>2.059 ± 0.010</td>
<td>-194.6 ± 1.7</td>
<td>0.0702</td>
</tr>
<tr>
<td>$K_2^*(1430)^-$</td>
<td>1.150 ± 0.009</td>
<td>-41.5 ± 0.4</td>
<td>0.0221</td>
</tr>
<tr>
<td>$K^*(1410)^-$</td>
<td>0.496 ± 0.011</td>
<td>83.4 ± 0.9</td>
<td>0.0026</td>
</tr>
<tr>
<td>$K^*(1680)^-$</td>
<td>1.556 ± 0.097</td>
<td>-83.2 ± 1.2</td>
<td>0.0016</td>
</tr>
<tr>
<td>$K^*(892)^+$</td>
<td>0.139 ± 0.002</td>
<td>-42.1 ± 0.7</td>
<td>0.0046</td>
</tr>
<tr>
<td>$K_0^*(1430)^+$</td>
<td>0.176 ± 0.007</td>
<td>-102.3 ± 2.1</td>
<td>0.0005</td>
</tr>
<tr>
<td>$K_2^*(1430)^+$</td>
<td>0.077 ± 0.007</td>
<td>-32.2 ± 4.7</td>
<td>0.0001</td>
</tr>
<tr>
<td>$K^*(1410)^+$</td>
<td>0.248 ± 0.010</td>
<td>-145.7 ± 2.9</td>
<td>0.0007</td>
</tr>
<tr>
<td>$K^*(1680)^+$</td>
<td>1.407 ± 0.053</td>
<td>86.1 ± 2.7</td>
<td>0.0013</td>
</tr>
<tr>
<td>$\rho(770)$</td>
<td>1 (fixed)</td>
<td>0 (fixed)</td>
<td>0.2000</td>
</tr>
<tr>
<td>$\omega(782)$</td>
<td>0.0370 ± 0.0004</td>
<td>114.9 ± 0.6</td>
<td>0.0057</td>
</tr>
<tr>
<td>$f_2(1270)$</td>
<td>1.300 ± 0.013</td>
<td>-31.6 ± 0.5</td>
<td>0.0141</td>
</tr>
<tr>
<td>$\rho(1450)$</td>
<td>0.532 ± 0.027</td>
<td>80.8 ± 2.1</td>
<td>0.0012</td>
</tr>
</tbody>
</table>

$\pi\pi$ S wave
- β_1: 4.23 ± 0.02 | 164.0 ± 0.2
- β_2: 10.90 ± 0.02 | 15.6 ± 0.2
- β_3: 37.4 ± 0.3 | 3.3 ± 0.4
- β_4: 14.7 ± 0.1 | -8.9 ± 0.3
- f_{11}^{psd}: 12.76 ± 0.05 | -161.1 ± 0.3
- f_{12}^{psd}: 14.2 ± 0.2 | -176.2 ± 0.6
- f_{13}^{psd}: 10.0 ± 0.5 | -124.7 ± 2.1

$K\pi$ S wave
- Parameters
- M (MeV/c2): 1461.7 ± 0.8
- Γ (MeV/c2): 268.3 ± 1.1
- F: 0.4524 ± 0.005
- ϕ_F (rad): 0.248 ± 0.003
- R: 1 (fixed)
- ϕ_R (rad): 2.495 ± 0.009
- a (GeV/c$^{-1}$): 0.172 ± 0.006
- r (GeV/c$^{-1}$): -20.6 ± 0.3

Parameters
- $K^*(892)$
- $M_{K^*(892)}$ (MeV/c2): 893.68 ± 0.04
- $\Gamma_{K^*(892)}$ (MeV/c2): 47.49 ± 0.06
Systematics for $D^0 \rightarrow K_S^0 \pi^+ \pi^-$

- Major source of systematic uncertainties
 1. fitting the ΔM distributions
 2. Resolution function
 3. Binning of proper decay time
 4. Reconstruction efficiencies of WS and RS decays
Systematics for $D^0 \rightarrow K^0_S \pi^+ \pi^-$

Source	No CPV		CPV					
	Δx/10^{-4}	Δy/10^{-4}	Δx/10^{-4}	Δy/10^{-4}		q/p	/10^{-2}	arg(q/p)/°
Best candidate selection	+1.0	+1.9	+1.3	+2.0	-2.3	+2.2		
Signal and background yields	±0.3	±0.3	±0.4	±0.4	±1.2	±0.8		
Fraction of wrong-tagged events	-0.7	-0.4	-0.5	+0.4	+1.1	+0.8		
Time resolution of signal	-1.4	-0.9	-1.2	-0.8	+0.8	-1.2		
Efficiency	-1.1	-2.1	-1.4	-2.2	+3.1	+1.3		
Combinatorial PDF	+1.9	+2.3	+2.4	+2.9	+1.2	+2.8		
$K^*(892)$ DCS/CF reduced by 5%	-7.3	+2.3	-6.9	+3.1	+3.3	-1.4		
$K_2^*(1430)$ DCS/CF reduced by 5%	+1.7	-0.7	+2.2	-0.2	+1.1	+0.4		
Total	+2.8	+3.7	+3.6	+4.3	+5.0	+3.3		

Source	No CPV		CPV					
	Δx/10^{-4}	Δy/10^{-4}	Δx/10^{-4}	Δy/10^{-4}		q/p	/10^{-2}	arg(q/p)/°
Resonance M & Π	±1.4	±1.2	±1.2	±1.3	±2.1	±1.0		
$K^*(1680)^+$ removal	-1.8	-3.0	-2.2	-2.8	+2.1	-1.2		
$K^*(1410)^-$ removal	-1.2	-3.6	-1.7	-3.9	-1.3	+1.4		
$\rho(1450)$ removal	+2.1	+0.3	+2.1	+0.5	-1.9	+0.9		
Form factors	+4.0	+2.4	+4.3	+2.0	-2.4	-1.0		
$\Gamma(q^2) = constant$	+3.3	-1.6	+4.1	-2.3	-1.6	+1.3		
Angular dependence	-8.5	-3.9	-7.4	-3.6	+5.6	-3.2		
K-matrix formalism	-2.2	+1.8	-3.5	+2.4	-3.6	+1.1		
Total	±5.8	±3.2	±6.4	±3.4	±6.4	±2.5		
Systematics for $D^0 \rightarrow \pi^0 \pi^0$

<table>
<thead>
<tr>
<th>Source</th>
<th>$\pi^0 \pi^0$</th>
<th>$K_S^0 d^0$</th>
</tr>
</thead>
<tbody>
<tr>
<td>Signal shape</td>
<td>±0.03</td>
<td>±0.01</td>
</tr>
<tr>
<td>Slow pion correction</td>
<td>±0.07</td>
<td>±0.07</td>
</tr>
<tr>
<td>A_{CP} extraction method</td>
<td>±0.07</td>
<td>±0.02</td>
</tr>
<tr>
<td>K^0 / \bar{K}^0-material effects</td>
<td>⋮</td>
<td>±0.01</td>
</tr>
<tr>
<td>Total</td>
<td>±0.10</td>
<td>±0.07</td>
</tr>
</tbody>
</table>