Heavy Flavor Measurements at STAR

Róbert Vértesi
robert.vertesi@ujf.cas.cz

for the STAR collaboration

Nuclear Physics Institute
Academy of Sciences of the Czech Republic
Heavy flavor physics at STAR

- sQGP signatures and properties using heavy quarks (c, b)

1. Open Heavy Flavor
2. Quarkonia

- p+p 200 and 500 GeV
- d+Au 200 GeV
- Au+Au 39, 62.4 and 200 GeV
- U+U 193 GeV

...many more not covered

- Outlook: data analysis with the newly installed HFT and MTD
1. Open heavy flavor

- Heavy quarks c, b
 - Produced in initial hard processes
 - Probe the strongly interacting Quark–Gluon Plasma
 - Modified spectrum: access parton energy loss
 - Flow: sensitive to dynamics, thermalization
1. Open heavy flavor

- Heavy quarks c, b
 - Produced in initial hard processes
 - Probe the strongly interacting Quark–Gluon Plasma
 - Modified spectrum: access parton energy loss
 - Flow: sensitive to dynamics, thermalization

- Semi-leptonic decays
 - Higher branching ratio, easy to trigger on
 - Indirect access to kinematics, mixture of c and b contributions

- Hadronic reconstruction
 - Direct access to kinematics
 - Large combinatorial bg., difficult to trigger
RHIC/STAR

- **TPC**
 - dE/dx PID
 - Large acceptance, uniform in a wide energy range

- **TOF**
 - PID using flight time

- **BEMC**
 - High-p_T trigger
 - PID using E/p ratio

- **VPD**
 - Trigger minimum bias events
D⁰ and D* production in p+p

p+p 200 GeV

- Essential as a baseline for A+A
- Consistent with FONLL upper limit
- New point at 0<p_T<0.7 GeV/c
 → Lévy fit describes data well
D⁰ and D* production in p+p

p+p 200 GeV
- Essential as a baseline for A+A
- Consistent with FONLL upper limit
- New point at 0<p_T<0.7 GeV/c
 → Lévy fit describes data well

New 500 GeV measurement
- Consistent with NLO calculations
Total cross section scales with the number of binary collisions.
D⁰ production in Au+Au

Total cross section scales with the number of binary collisions

Charm is mostly produced in initial hard processes
D⁰ suppression in Au+Au

- Strong suppression in central collisions at p_T>2 GeV/c
 - Identical to that observed for pions

- Enhancement at 1<p_T<2 GeV/c
D⁰ suppression and models

- Strong suppression in central collisions at $p_T > 2$ GeV/c
 - Identical to that observed for pions
- Enhancement at $1 < p_T < 2$ GeV/c
- Understanding from models:
 - Characteristic low-p_T “hump” is described by models that include charm–light quark coalescence
 - High-p_T suppression is consistent with strong charm–medium interaction
 - CNM effects may be important

→ Call for a high-statistics $p+A$ (d+A) run

arXiv:1404.6185 (submitted to PRL)
D⁰ in U+U collisions

- Trend in Au+Au continued in U+U
- Increasing suppression with N_{part}

U+U collisions reach ~20% higher Bjorken energy density than Au+Au
Non-photonic electrons in 200 GeV Au+Au

Suppression
- Significant suppression of NPE in central collisions \(p_T > 4 \text{ GeV/c} \)
- Similar to that of \(D^0 \) and light hadrons
- Radiation energy loss alone not enough to explain suppression

Anisotropy (v\(_2\))
- Substantial elliptic flow of NPE is seen in 200 GeV Au+Au collisions

Note: it’s challenging for models to describe suppression and flow at the same time
Non-photonic electrons: 39, 62.4 GeV

Suppression
- No sign of suppression of NPE in 62.4 GeV Au+Au collisions

Note: pQCD-scaled p+p reference

Anisotropy (v_2)
- NPE in 39 and 62.4 GeV Au+Au collisions consistent with no flow ($p_T<1$ GeV/c)
2. Quarkonia

Quarkonia probe thermal properties of the sQGP
- J/ψ suppression due to color screening
- Sequential melting of states \rightarrow sQGP thermometer

However: picture is complicated by…
- Cold nuclear matter effects
- Co-mover absorption
- Regeneration in the sQGP…

Mócsy, Petreczky, PRD 77, 014501
2. Quarkonia

Quarkonia probe thermal properties of the sQGP

- J/ψ suppression due to color screening
- Sequential melting of states → sQGP thermometer

However: picture is complicated by…

- Cold nuclear matter effects
- Co-mover absorption
- Regeneration in the sQGP…

Precise measurements to disentangle various effects

- p+p → reference
- d+Au → CNM effects
- Vary collision energy: 39 GeV, 62.4 GeV, 200 GeV
- Vary colliding systems: U+U vs. Au+Au
- High-\(p_T\) J/ψ → suppress CNM and regeneration
- \(Υ\) → negligible recombination and co-mover absorption

Mócsy, Petreczky, PRD 77, 014501
J/ψ suppression: 39, 62.4, 200 GeV

Suppression

- Similar to light hadrons
- Similar in central collisions from 39 thru 62.4 up to 200 GeV

Note: 39 and 62.4 GeV CEM references have large uncertainties

- Similar in U+U and Au+Au
- Model with prompt production and regeneration consistent with data
J/ψ suppression and flow in Au+Au

Suppression
- Similar to light hadrons
- Similar in central collisions from 39 thru 62.4 up to 200 GeV
 Note: 39 and 62.4 GeV CEM references have large uncertainties
- Similar in U+U and Au+Au
- Model with prompt production and regeneration consistent with data

Anisotropy (v_2)
- J/ψ v_2 consistent with non-flow ($p_T > 2$ GeV/c; unique among hadrons)
- Model with thermalized charm quark coalescence disfavored

[32] Zhao, Rapp, PLB 655 (2007) 126
[33] Liu,Xu,Zhuang, NPA834 (2010) 317c
[34] Heinz, Chen (2012)
High-p_T J/ψ in $Au+Au$

- CNM effects are small
- Less regeneration
- Suppression of high-p_T J/ψ in central collisions

$\sqrt{s_{NN}} = 200$ GeV

$A+A \rightarrow J/\psi+X$

STAR Au+Au

STAR ($p_T > 5$ GeV/c)

PHENIX Au+Au ($|y|<0.35$)

Zhao, Rapp

Zhao, Rapp ($p_T > 5$ GeV/c)

Liu et al.

Liu et al. ($p_T > 5$ GeV/c)

R_{AA} vs N_{part}

Liu et al., PLB 678, 72 (2009)
Zhao and Rapp, PRC 82, 064905(2010), PLB 664, 253 (2008)
High-p_T J/ψ in Au+Au

- CNM effects are small
- Less regeneration
- Suppression of high-p_T J/ψ in central collisions

High-p_T J/ψ suppression is clearly an sQGP effect
Upsilon in A+A

- Co-mover absorption and recombination negligible at RHIC

- Suppression in 200 GeV central Au+Au

- Trend continues in 193 GeV U+U (20% more energy density)

Model calculations:

- Potential based on internal energy assumes 428<T<443 MeV

- Strong binding scenario, CNM effects included

Excited Y states in Au+Au

Central Au+Au:
- No evidence of excited states $\Upsilon(2S)$ and $\Upsilon(3S)$
- $\Upsilon(1S)$ suppression is similar to high-p_T J/ψ

Suppression of Y is an indication of color deconfinement
Excited Y states in Au+Au

Central Au+Au:
- No evidence of excited states $Y(2S)$ and $Y(3S)$
- $Y(1S)$ suppression is similar to high-p_T J/ψ

Suppression of Y is an indication of color deconfinement

However...
- d+Au data indicates that CNM effects can be important
- Models do not explain mid-rapidity d+Au data
 → Better understanding requires high-statistics p+A (d+A)
Outlook: Heavy Flavor Tracker

- Innermost, silicon detectors (3 subsystems)
- Resolves secondary vertex
- Physics goal: **Precision measurement of heavy quark production**

Complete and taking data in Run14

- **IST at 14 cm**
- **PXL at 2.9 and 8.2 cm**
- **SSD at 22 cm**

HFT Design

Qiu Hao

Outlook

- Newly commissioned STAR HFT detector
- 2 layers of thin Silicon pixel (MAPS) 0.4% X_0/layer, 12x12µm, 360M pixels
- 2 layers of Silicon pad/strip detectors fast readout, bridging TPC and PXL
- Stay tuned for greatly improved R_AA and v_2 HF measurements from STAR soon!

Talk: Qiu-557; **Posters:** Lomnitz-M13 and Wang-M30

HFT CDR STAR-sn0600

IST at 14 cm

PXL at 2.9 and 8.2 cm

SSD at 22 cm

Anisotropy Parameter v_2 (%)

- **200 GeV Au+Au Collisions**
 - (D^0: 1B min bias events; |y|<0.5)

<table>
<thead>
<tr>
<th>Hydro</th>
<th>charged hadrons</th>
<th>v_2(c) = v_2(q)</th>
<th>v_2(c) = 0</th>
</tr>
</thead>
</table>

D^0 v_2 projection

- Transverse Momentum p_T (GeV/c)
Outlook: Muon Telescope Detector

- Outermost, gas detector
- Physics goal: **Precision measurement of heavy quarkonia through the muon channel**
- Acceptance: 45% in azimuth, |y|<0.5

Complete and taking data in Run14

![Image of the muon telescope detector]

33 M Di-muon triggered events

Run 13 p+p @ 500 GeV |y_{\mu\mu}|<0.65

J/ψ sample data

- Unlike-sign
- Like-sign
- Signal

Y projection

STAR Muon Telescope Detector

60 pb$^{-1}$ p+p, 20 nb$^{-1}$ Au+Au

- Y(1S)\rightarrowμ+μ
- Y(2S)\rightarrowμ+μ
- Y(3S)\rightarrowμ+μ
- Y(1S+2S+3S)\rightarrowe+e, |y|<0.5

M_{ee} (GeV/c^2)

- Signal

R_{AA}

- 0
- 0.2
- 0.4
- 0.6
- 0.8
- 1

<N_{part}>

- 0
- 50
- 100
- 150
- 200
- 250
- 300
- 350
Open heavy flavor

- Total D^0 x-section follows N_{bin} scaling \rightarrow early charm production
- Low-p_T D^0 “hump” \rightarrow suggests charm–light quark coalescence
- High-p_T suppression \rightarrow indicates strong charm–medium interaction
- No 62.4 GeV NPE suppression or flow observed, contrary to 200 GeV

Quarkonia

- J/ψ suppression similar in central 39, 62.4 and 200 GeV collisions
- No J/ψ elliptic flow is observed \rightarrow thermalized cc-coalescence unlikely
- Significant high-p_T J/ψ and similar $Y(1S)$ suppression in central A+A, hint for a complete $Y(2S)$ and $Y(3S)$ suppression
 \rightarrow clear signal of a deconfined medium

U+U measurements show similar suppression patterns to Au+Au
Open heavy flavor

- Total D0 x-section follows N_{bin} scaling \rightarrow early charm production
- Low-p_T D0 “hump” \rightarrow suggests charm–light quark coalescence
- High-p_T suppression \rightarrow indicates strong charm–medium interaction
- No 62.4 GeV NPE suppression or flow observed, contrary to 200 GeV

Quarkonia

- J/ψ suppression similar in central 39, 62.4 and 200 GeV collisions
- No J/ψ elliptic flow is observed \rightarrow thermalized cc-coalescence unlikely
- Significant high-p_T J/ψ and similar Y(1S) suppression in central A+A, hint for a complete Y(2S) and Y(3S) suppression
 \rightarrow clear signal of a deconfined medium

U+U measurements show similar suppression patterns to Au+Au

Stay tuned for new great results with HFT and MTD
Thank You!

ARGONNE NATIONAL LABORATORY, ARGONNE, ILLINOIS 60439
BROOKHAVEN NATIONAL LABORATORY, UPTON, NEW YORK 11973
UNIVERSITY OF CALIFORNIA, BERKELEY, CALIFORNIA 94720
UNIVERSITY OF CALIFORNIA, DAVIS, CALIFORNIA 95616
UNIVERSITY OF CALIFORNIA, LOS ANGELES, CALIFORNIA 90095
UNIVERSIDADE ESTADUAL DE CAMPINAS, SAO PAULO, BRAZIL
UNIVERSITY OF ILLINOIS AT CHICAGO, CHICAGO, ILLINOIS 60607
CREIGHTON UNIVERSITY, OMAHA, NEBRASKA 68178
CZECH TECHNICAL UNIVERSITY IN PRAGUE, FNSPE, PRAGUE, 115 19, CZECH REPUBLIC
NUCLEAR PHYSICS INSTITUTE AS CR, 250 68 ŘEŽ/PRAGUE, CZECH REPUBLIC
UNIVERSITY OF FRANKFURT, FRANKFURT, GERMANY
INSTITUTE OF PHYSICS, BHUBANESWAR 751005, INDIA
INDIAN INSTITUTE OF TECHNOLOGY, MUMBAI, INDIA
INDIANA UNIVERSITY, BLOOMINGTON, INDIANA 47408
ALIKHANOV INSTITUTE FOR THEORETICAL AND EXPERIMENTAL PHYSICS, MOSCOW, RUSSIA
UNIVERSITY OF JAMMU, JAMMU 180001, INDIA
JOINT INSTITUTE FOR NUCLEAR RESEARCH, DUBNA, 141 980, RUSSIA
KENT STATE UNIVERSITY, KENT, OHIO 44242
UNIVERSITY OF KENTUCKY, LEXINGTON, KENTUCKY, 40506-0055
INSTITUTE OF MODERN PHYSICS, LANZHOU, CHINA
LAWRENCE BERKELEY NATIONAL LABORATORY, BERKELEY, CALIFORNIA 94720
MASSACHUSETTS INSTITUTE OF TECHNOLOGY, CAMBRIDGE, MA
MAX-PLANCK-INSTITUT FÜR PHYSIK, MUNICH, GERMANY
MICHIGAN STATE UNIVERSITY, EAST LANSING, MICHIGAN 48824
MOSCOW ENGINEERING PHYSICS INSTITUTE, MOSCOW RUSSIA
NIKHEF AND UTRECHT UNIVERSITY, AMSTERDAM, THE NETHERLANDS
OHIO STATE UNIVERSITY, COLUMBUS, OHIO 43210
OLD DOMINION UNIVERSITY, NORFOLK, VA, 23529
PANJAB UNIVERSITY, CHANDIGARH 160014, INDIA
PENNSTATE UNIVERSITY, UNIVERSITY PARK, PENNSYLVANIA 16802
INSTITUTE OF HIGH ENERGY PHYSICS, PROTVINO, RUSSIA
PURDUE UNIVERSITY, WEST LAFAYETTE, INDIANA 47907
PUSAN NATIONAL UNIVERSITY, PUSAN, REPUBLIC OF KOREA
UNIVERSITY OF RAJASTHAN, JAIPUR 302004, INDIA
RICE UNIVERSITY, HOUSTON, TEXAS 77251
UNIVERSIDADE DE SÃO PAULO, SAO PAULO, BRAZIL
UNIVERSITY OF SCIENCE \\& TECHNOLOGY OF CHINA, HEFEI 230026, CHINA
SHANDONG UNIVERSITY, JINAN, SHANDONG 250100, CHINA
SHANGHAI INSTITUTE OF APPLIED PHYSICS, SHANGHAI 201800, CHINA
SUBATECH, NANTES, FRANCE
TEXAS A&M UNIVERSITY, COLLEGE STATION, TEXAS 77843
UNIVERSITY OF TEXAS, AUSTIN, TEXAS 78712
UNIVERSITY OF HOUSTON, HOUSTON, TX, 77204
TSINGHUA UNIVERSITY, BEIJING 100084, CHINA
UNITED STATES NAVAL ACADEMY, ANNAPOLIS, MD 21402
VALPARAISO UNIVERSITY, VALPARAISO, INDIANA 46383
VARIABLE ENERGY CYCLOTRON CENTRE, KOLKATA 700064, INDIA
WARSAW UNIVERSITY OF TECHNOLOGY, WARSAW, POLAND
UNIVERSITY OF WASHINGTON, SEATTLE, WASHINGTON 98195
WAYNE STATE UNIVERSITY, DETROIT, MICHIGAN 48201
INSTITUTE OF PARTICLE PHYSICS, CCNU (HZNU), WUHAN 430079, CHINA
YALE UNIVERSITY, NEW HAVEN, CONNECTICUT 06520
UNIVERSITY OF ZAGREB, ZAGREB, HR-10002, CROATIA
D^0 in U+U, spectra and R_{AA}
D^0, model ingredients

<table>
<thead>
<tr>
<th></th>
<th>TAMU</th>
<th>SUBATECH</th>
<th>Torino</th>
<th>Duke</th>
<th>LANL</th>
</tr>
</thead>
<tbody>
<tr>
<td>HQ prod.</td>
<td>LO</td>
<td>FNOLL</td>
<td>NLO</td>
<td>LO</td>
<td>LO</td>
</tr>
<tr>
<td>QGP-Hydro</td>
<td>ideal</td>
<td>ideal</td>
<td>viscous</td>
<td>viscous</td>
<td>ideal</td>
</tr>
<tr>
<td>Coalescence</td>
<td>Yes</td>
<td>Yes</td>
<td>No</td>
<td>Yes</td>
<td>No</td>
</tr>
<tr>
<td>Cronin effect</td>
<td>Yes</td>
<td>Yes</td>
<td>No</td>
<td>No</td>
<td>Yes</td>
</tr>
<tr>
<td>Shadowing</td>
<td>No</td>
<td>No</td>
<td>Yes</td>
<td>Yes/No</td>
<td>Yes</td>
</tr>
</tbody>
</table>

Zhenyu Ye, QM2014
Suppression of open charm at high p_T in U+U collisions is similar to and extends the trend as that of open charm and pions in Au+Au collisions.
NPE Au+Au 200 GeV
NPE 62.6 GeV FONLL vs. pQCD

Data/FONLL Au+Au @ $\sqrt{s_{NN}} = 62.4$ GeV
- Min-Bias

Data/pQCD Au+Au @ $\sqrt{s_{NN}} = 62.4$ GeV
- Min-Bias

pQCD: Maciula-Szczurek k_t-fact. with Jung CCFM UGDF

STAR preliminary
High-pT J/ψ – motivation

\[R_{dAu} \sim 1 \text{ at high } P_T \]
\[\rightarrow \text{CNM effects do not play a strong role} \]

J/ψ vs pT, energy / system

39, 62, 200 GeV Au+Au

U+U vs. Au+Au
J/ψ in $p+p$ 200 GeV

- STAR coverage out to 14 GeV/c
- Prompt NLO CS +CO describes the data
- Prompt CEM better at high-p_T
J/ψ in p+p – polarization

- 2<pT<6 GeV/c
- STAR+PHENIX consistent with NLO +CSM
 - Higher statistics needed to discriminate
- p+p 500 GeV results will improve precision for future CNM calculations

\[\chi^2/\text{ndf} = 1.5/4 \]

\[\lambda_\theta = -0.16 p_T + 0.18 \]
Heavy Flavor at STAR, R. Vértesi

\(\Upsilon \) in p+p 200 GeV

\[\Upsilon(1S+2S+3S) \]

\[B \cdot \frac{d\sigma}{dy} (\text{pb}) \]

\[\sqrt{s} (\text{GeV})^{1/3} \]

\[\Upsilon(1S+2S+3S) \rightarrow l^+l^- \]

\[\text{STAR, p+p, } |y|<1.0 \]

\[\text{CFS, p+A, E605, p+A, CCOR, p+p, R209, p+p} \]

\[\text{R806, p+p, UA1, p+\bar{p}, CDF, p+\bar{p}, CMS, p+p} \]

\[\text{NLO CEM, MRST HO, } m=4.75 \text{ GeV/c}^2, m/\mu=1 \]