Solar Neutrinos in Super-Kamiokande

ICHEP2014 @Valencia
4 July 2014

Hiroyuki Sekiya
ICRR, University of Tokyo
for the Super-K Collaboration
Super-Kamiokande

- 50kton pure water Cherenkov detector
- 1km (2.7km w.e) underground in Kamioka
- 11129 50cm PMTs in Inner Detector
- 1885 20cm PMTs in Outer Detector

Physics targets of Super-Kamiokande

Solar ν, Relic SN ν, Proton decay, WIMPs, Atmospheric ν

- \sim3.5 MeV
- \sim20
- \sim100
- \sim1 GeV
- TeV
Solar neutrinos observation
The results: Solar global fit

- This SK update and other latest results are combined.

Combined solar fit with KamLAND

\[\sin^2 \theta_{13} = 0.0242 \pm 0.0026 \]

Without reactor \(\theta_{13} \) constraint

\[\sin^2 \theta_{13} = 0.0221 \pm 0.0012 \]

\(~2\sigma\) tension in \(\Delta m^2_{21} \)
between solar and KamLAND

Non-zero \(\theta_{13} \) at 2\(\sigma \) from solar+KamLAND

Good agreement with \(\sin^2 \theta_{13} = 0.0221 \pm 0.0012 \)
Daya Bay, RENO & DC

(Neutrino2014)
Motivation

- Search for the direct signals of the MSW effect

Solar matter effect

Energy spectrum distortion

Earth matter effect

Flux day-night asymmetry

Neutrino survival probability

JHEP 0311:004(2003)

![Graph showing neutrino survival probability and mass squared differences](image)

- Vacuum oscillation dominant
- Solar + KamLAND
 \[
 \sin^2 \theta_{12} = 0.308, \quad \Delta m_{21}^2 = 7.50 \times 10^{-5} \text{eV}^2
 \]
- Solar
 \[
 \sin^2 \theta_{12} = 0.311, \quad \Delta m_{21}^2 = 4.85 \times 10^{-5} \text{eV}^2
 \]
- Matter oscillation dominant
- Regenerate ν_e by earth matter effect
Improvements in SK-IV

- Reduced ^{222}Rn BG
- New analysis in low energy bins
 Remaining BG-electrons from ^{214}Bi should have more multiple-scatterings than signal-electrons have: MSG

- Reduced systematic error
 1.7% for flux cf. SK-I: 3.2% SK-III: 2.1%

Achieved 3.5 MeV(kin.) energy threshold
8.6σ signal is observed with MSG
8B solar ν in SK-I+II+III+IV

- 8B ν signals

$\Phi_{SK}(^8B) = 2.344 \pm 0.034 \times 10^6$ cm$^{-1}$s$^{-1}$

$\Phi_{SK+SNO}(^8B) = 5.30 \pm 0.17 - 0.11 \times 10^6$ cm$^{-1}$s$^{-1}$

8B ν could be the BG for DM search through NC coherent scattering.
Recoil electron spectra

SK-I Energy Spectrum

SK-II Energy Spectrum

SK-III Energy Spectrum

SK-IV Energy Spectrum

Data/MC (unoscillated)

Blue: Total uncertainty

Kinetic energy (MeV)

preliminary
N.B. All SK phase are combined without regard to energy resolution or systematics in this figure.

SK-I+II+III+IV spectrum

<table>
<thead>
<tr>
<th>(total # of bins of SKI - IV is 83)</th>
<th>χ^2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Solar+KamLAND</td>
<td>70.13</td>
</tr>
<tr>
<td>Solar</td>
<td>68.14</td>
</tr>
<tr>
<td>quadratic fit</td>
<td>67.67</td>
</tr>
<tr>
<td>exponential fit</td>
<td>66.54</td>
</tr>
</tbody>
</table>

Neutrino energy spectrum is convoluted in the electron recoil spectrum. For de-convolution, generic functions are used as a survival probability:

$$P_{ee}(E_\nu) = c_0 + c_1 \left(\frac{E_\nu}{\text{MeV}} - 10 \right) + c_2 \left(\frac{E_\nu}{\text{MeV}} - 10 \right)^2$$

$$P_{ee}(E_\nu) = e_0 + \frac{e_1}{e_2} \left(\exp \left(e_2 \left(\frac{E_\nu}{\text{MeV}} - 10 \right) \right) - 1 \right)$$

SK recoil electron spectrum constrain the fit parameters (c_i, e_i) of the function and the allowed $P_{ee}(E\nu)$ is derived using the allowed (c_i, e_i).

$\phi^B_B = 5.25 \times 10^6/(\text{cm}^2\cdot\text{sec})$

$\phi_{\text{lep}} = 7.88 \times 10^3/(\text{cm}^2\cdot\text{sec})$
Allowed $P_{ee}(E_{\nu})$ for SK

$$P_{ee}(E_{\nu}) = c_0 + c_1 \left(\frac{E_{\nu}}{MeV} - 10 \right) + c_2 \left(\frac{E_{\nu}}{MeV} - 10 \right)^2$$

- MSW (solar+KamLAND) is consistent at ~1.6σ
- MSW (solar) fits better (at ~0.7σ)

$\sin^2 \theta_{12} = 0.308 \quad \Delta m^2_{21} = 7.50 \times 10^{-5} eV^2$

$\sin^2 \theta_{12} = 0.311 \quad \Delta m^2_{21} = 4.85 \times 10^{-5} eV^2$

$\sqrt{\text{MSW (solar+KamLAND) is consistent at } \sim 1.6\sigma}$
$\sqrt{\text{MSW (solar) fits better (at } \sim 0.7\sigma}$
Allowed $P_{ee}(E_\nu)$ for SK+SNO

\[P_{ee}(E_\nu) = c_0 + c_1 \left(\frac{E_\nu}{MeV} - 10 \right) + c_2 \left(\frac{E_\nu}{MeV} - 10 \right)^2 \]

- Solar+KamLAND
 - $\sin^2 \theta_{12} = 0.308$
 - $\Delta m^2_{21} = 7.50 \times 10^{-5} eV^2$

- Solar
 - $\sin^2 \theta_{12} = 0.311$
 - $\Delta m^2_{21} = 4.85 \times 10^{-5} eV^2$

✓ SK and SNO are complementary for the shape constraint
✓ MSW is consistent at 1σ
Global view of $P_{ee}(E_{\nu})$

- Preliminary
- All solar (pp)
- Borexino (pep)
- Borexino (7Be)
- Homestake + SK+SNO (CNO)
- SK+SNO

$P_{ee}(E_{\nu})$ vs. ν Energy in MeV
Flux zenith angle distribution

SK-I - IV combined (Eth=4.5 MeV for SK-I,III,IV 6.5 MeV for SK-II)

- Solar best fit
 - $\sin^2 \theta_{12} = 0.308$
 - $\Delta m^2_{21} = 7.50 \times 10^{-5} eV^2$

- Solar+KamLAND
 - $\sin^2 \theta_{12} = 0.308$
 - $\Delta m^2_{21} = 4.85 \times 10^{-5} eV^2$

preliminary
Day/Night asymmetry amplitude

- **Energy-dependence of the variation**

<table>
<thead>
<tr>
<th>Energy Range</th>
<th>Rate/Rate average</th>
<th>Cosine of the Day/Night Asymmetry</th>
<th>Fitted asymmetry amplitude</th>
</tr>
</thead>
<tbody>
<tr>
<td>16-20 MeV</td>
<td>1.02</td>
<td>0.98</td>
<td>$\Delta m^2_{21}=4.84 \times 10^{-5} \text{eV}^2$</td>
</tr>
<tr>
<td>12.5-13 MeV</td>
<td>1.02</td>
<td>0.98</td>
<td>$\Delta m^2_{21}=7.50 \times 10^{-5} \text{eV}^2$</td>
</tr>
<tr>
<td>10-10.5 MeV</td>
<td>1.02</td>
<td>0.98</td>
<td>$\Delta m^2_{21}=4.84 \times 10^{-5} \text{eV}^2$</td>
</tr>
<tr>
<td>7.5-8 MeV</td>
<td>1.02</td>
<td>0.98</td>
<td>$\Delta m^2_{21}=7.50 \times 10^{-5} \text{eV}^2$</td>
</tr>
<tr>
<td>5-5.5 MeV</td>
<td>1.02</td>
<td>0.98</td>
<td>$\Delta m^2_{21}=4.84 \times 10^{-5} \text{eV}^2$</td>
</tr>
</tbody>
</table>

Table:

<table>
<thead>
<tr>
<th>Detector</th>
<th>Asymmetry Amplitude</th>
<th>Significance</th>
</tr>
</thead>
<tbody>
<tr>
<td>SK-I</td>
<td>$-2.0 \pm 1.8 \pm 1.0%$</td>
<td>$-1.9 \pm 1.7 \pm 1.0%$</td>
</tr>
<tr>
<td>SK-II</td>
<td>$-4.4 \pm 3.8 \pm 1.0%$</td>
<td>$-4.4 \pm 3.6 \pm 1.0%$</td>
</tr>
<tr>
<td>SK-III</td>
<td>$-4.2 \pm 2.7 \pm 0.7%$</td>
<td>$-3.8 \pm 2.6 \pm 0.7%$</td>
</tr>
<tr>
<td>SK-IV</td>
<td>$-3.6 \pm 1.6 \pm 0.6%$</td>
<td>$-3.3 \pm 1.5 \pm 0.6%$</td>
</tr>
<tr>
<td>Combined</td>
<td>$-3.3 \pm 1.0 \pm 0.5%$</td>
<td>$-3.1 \pm 1.0 \pm 0.5%$</td>
</tr>
<tr>
<td>Non-zero</td>
<td>3.0σ</td>
<td>2.8σ</td>
</tr>
</tbody>
</table>

First observation of day/night asymmetry at 3\(\sigma\) significance level
Δm^2_{21} dependence

$\sin^2 \theta_{12} = 0.311, \sin^2 \theta_{13} = 0.025$

1σ KamLAND 1σ Solar

SK-I,II,III,IV best fit

Solar region differ from zero by 2.9~3.0σ agree with expect by 1.0σ

KamLAND region differ from zero by more than 2.8σ agree with expect by 1.3σ
Summary

- SK has observed \(\sim 70000 \) solar \(\nu \) interactions, by far the largest sample of solar neutrino events in the world.
- SK data provide the first indication (at 2.8\(\sim \)3.0 \(\sigma \)) of terrestrial matter effects on \(^8\text{B}\) solar \(\nu \) oscillation.
- SK gives the world’s strongest constraints on the shape of the survival probability \(P_{ee}(E\nu) \) in the transition region between vacuum oscillations and MSW resonance.
 - SK spectrum results are consistent with MSW up-turn prediction within \(\sim 1\sigma \).
- SK measurements strongly constrain neutrino oscillation parameters:
 - SK gives world’s best constraint on \(\Delta m_{21}^2 \) using neutrinos.
 - There is a \(2\sigma \) tension between SK’s neutrino and KamLAND’s anti-neutrino measurement of \(\Delta m_{21}^2 \).
- Last month SK started taking data at \(\sim 2.5 \) MeV at \(\sim 100\% \) trigger efficiency. Stay tuned for very low energy SK neutrino.
Extra slides
Full summary

- SK has observed ~70000 solar neutrino interactions in ~4500 days (1.5 solar cycles), by far the largest sample of solar neutrino events in the world.
- SK data provide the first indication (at 2.8~3.0 sigma) of terrestrial matter effects on 8B solar neutrino oscillation. This is the first observation using a single detector and identical neutrino beams that matter affects neutrino oscillations.
- SK has successfully lowered the analysis threshold to ~3.5 MeV kinetic recoil electron energy.
- SK gives the world’s strongest constraints on the shape of the survival probability $P_{ee}(E_{\nu})$ in the transition region between vacuum oscillations and MSW resonance.
- SK spectrum results slightly disfavor the MSW resonance curves, but are consistent with MSW prediction within 1-1.7 sigma.
- SK measurements strongly constrain neutrino oscillation parameters:
 - SK uniquely selects the Large Mixing Angle MSW region by >3sigma,
 - gives world’s best constraint on solar Δm^2 using neutrinos,
 - and significantly contributes to the measurement of the solar angle.
- There is a 2 sigma tension between SK’s neutrino and KamLAND’s anti-neutrino measurement of the solar Δm^2.
- Last month SK started taking data at ~2.5 MeV at ~100% trigger efficiency. Stay tuned for very low energy SK solar neutrino
Wide-band Intelligent Trigger

- Reconstruction and Reduction just after Front-end

```
100% trigger efficiency above 2.5MeV(kin.)
```

```
Just started
```
Oscillation parameter
SK and SNO

\[
\Delta m^2 \text{ in eV}^2 \\
\sin^2(\theta_{12}) = 0.317^{+0.017}_{-0.027} \\
m^{2}_{21} = (5.4^{+2.2}_{-1.1}) \times 10^{-5} \text{eV}^2
\]

\[
\sin^2(\theta_{12}) = 0.339^{+0.027}_{-0.024} \\
m^{2}_{21} = (4.74^{+1.6}_{-0.79}) \times 10^{-5} \text{eV}^2
\]

\[
\sin^2(\theta_{12}) = 0.313 \pm 0.014 \\
m^{2}_{21} = (4.86^{+1.4}_{-0.62}) \times 10^{-5} \text{eV}^2
\]
Probing the Unknown

Non-standard physics effects can alter the shape / position of the “MSW rise”

Non-standard interactions
(flavour changing NC)

Friedland, Lunardini, Peña-Garay,

Sterile Neutrinos

Holanda & Smirnov
PRD 83 (2011) 113011

Mass varying neutrinos (MaVaNs)

M.C. Gonzalez-Garcia, M. Maltoni
Improvements in SK-IV

- Reduced BG: Event rate becomes low and stable in SK-IV

- Reduced systematic error:
 1.7% for flux (cf. SK-I: 3.2% SK-III: 2.1%)

- Achieved 3.5 MeV(kin.) energy threshold
 7.5σ level signal is observed at 3.5 MeV bin
SK+SNO 8B total flux

- For each oscillation parameter set there is a minimum chi2 and a 8B error term describing the parabolic increase of the chi2 with deviations from the best chi2. The reduced chi2 vs. 8B flux is below. The jump is due to the relatively coarse grid in theta12.
- $5.30 \pm 0.17 - 0.11 \times 10^6/(\text{cm}^2 \text{ sec})$, which is a (+3\%, -2\%) error on the total 8B for SK+SNO compared to the 1.5\% error of SK's ES flux by itself.
Systematic errors

<table>
<thead>
<tr>
<th>Source</th>
<th>SK-IV flux (3.5-19.5MeV)</th>
<th>SK-III flux (4.5-19.5MeV)</th>
</tr>
</thead>
<tbody>
<tr>
<td>energy scale</td>
<td>+1.14, -1.16%</td>
<td>± 1.4%</td>
</tr>
<tr>
<td>energy resolution</td>
<td>+0.14, -0.08%</td>
<td>± 0.2%</td>
</tr>
<tr>
<td>B8 spectrum</td>
<td>+0.33, -0.37%</td>
<td>± 0.2%</td>
</tr>
<tr>
<td>trigger efficiency</td>
<td>± 0.1%</td>
<td>± 0.5%</td>
</tr>
<tr>
<td>angular resolution</td>
<td>+0.32, -0.25%</td>
<td>± 0.67%</td>
</tr>
<tr>
<td>vertex shift</td>
<td>± 0.18%</td>
<td>± 0.54%</td>
</tr>
<tr>
<td>BG event cut</td>
<td>± 0.36%</td>
<td>± 0.4%</td>
</tr>
<tr>
<td>hit pattern cut</td>
<td>± 0.27%</td>
<td>± 0.25%</td>
</tr>
<tr>
<td>another vertex cut</td>
<td>removed</td>
<td>± 0.45%</td>
</tr>
<tr>
<td>spallation cut</td>
<td>± 0.2%</td>
<td>± 0.2%</td>
</tr>
<tr>
<td>gamma cut</td>
<td>± 0.26%</td>
<td>± 0.25%</td>
</tr>
<tr>
<td>cluster hit cut</td>
<td>+0.45, -0.44%</td>
<td>± 0.5%</td>
</tr>
<tr>
<td>BG shape</td>
<td>± 0.1%</td>
<td>± 0.1%</td>
</tr>
<tr>
<td>signal extraction</td>
<td>± 0.7%</td>
<td>± 0.7%</td>
</tr>
<tr>
<td>cross section</td>
<td>± 0.5%</td>
<td>± 0.5%</td>
</tr>
</tbody>
</table>

- **Total 1.7 %**
Data set for global solar analysis
The most up-to-date data are used

- SK:
 - SK-I 1496 days, spectrum 4.5-19.5 MeV(kin.)+D/N: Ekin>4.5 MeV
 - SK-II 791 days, spectrum 6.5-19.5 MeV(kin.)+D/N: Ekin>7.0 MeV
 - SK-III 548 days, spectrum 4.0-19.5 MeV(kin.)+D/N: Ekin>4.5 MeV
 - SK-IV 1669 days, spectrum 3.5-19.5 MeV(kin.)+D/N: Ekin>4.5 MeV

- SNO:
 - Parameterized analysis (c0, c1, c2, a0, a1) of all SNO phased. (PRC88, 025501 (2013))
 - Same method is applied to both SK and SNO with a0 and a1 to LMA expectation

- Radiochemical: Cl, Ga

- 8B and hep flux $\phi_{8B}=5.25 \times 10^6/(cm^2\cdot sec)$
 $\phi_{hep}=7.88 \times 10^3/(cm^2\cdot sec)$