Status of CoGeNT/C-4 & COUPP/PICO

J.I. Collar, U of Chicago
CoGeNT generalities

* P-type Point Contact HPGe: Testing DAMA/LIBRA by reducing detector threshold (<10 GeV WIMP mass region)

* Applications at higher energy in $0\nu\beta\beta$ (MAJORANA, GERDA): excellent rejection of γ bckgs (multiple vs. single site events).

* Discrimination against surface bckgs via PSD, down to \sim0.5 keVee threshold.

* Excellent detector stability: five year continuous data-taking, and counting.

* Small bulk event excess near threshold. Low-significance annual modulation in same region, restricted to bulk events. Phase compatible with DAMA/LIBRA. Amplitude is 4-7x larger than expected from standard halo WIMPs.
C-4: coming up very soon
(x10 mass, 1/3 noise, >10x bckg reduction)

* First C-4 detector features
 ~1/3 of the noise of the
 existing GoGeNT detector, at
 ~x3 its mass (1.3 kg)

* Not a one-off: its noise
 characteristics are now
 reproducible (CANBERRA R&D
 supported by NSF award
 PHY-1003940). Second detector
 expected to reach the same
 noise figure at 2.7 kg, the
 realistic PPC maximum.

* C-4 aims at a x10 total mass
 increase, ~x20 background
 decrease, and substantial
 threshold reduction. Soudan is
 our laboratory of choice,
 assuming its continuity.

Design and assembly of ULB cryostat at PNNL
* First C-4 detector features ~1/3 of the noise of the existing GoGeNT detector, at ~x3 its mass (1.3 kg).

* Not a one-off: its noise characteristics are now reproducible (CANBERRA R&D supported by NSF award PHY-1003940). Second detector expected to reach the same noise figure at 2.7 kg, the realistic PPC maximum.

* C-4 aims at a x10 total mass increase, ~x20 background decrease, and substantial threshold reduction. Soudan is our laboratory of choice, assuming its continuity.
* First C-4 detector features ~1/3 of the noise of the existing GoGeNT detector, at ~x3 its mass (1.3 kg)

* Not a one-off: its noise characteristics are now reproducible (CANBERRA R&D supported by NSF award PHY-1003940). Second detector expected to reach the same noise figure at 2.7 kg, the realistic PPC maximum.

* C-4 aims at a x10 total mass increase, ~x20 background decrease, and substantial threshold reduction. Soudan is our laboratory of choice, assuming its continuity.

C-4 to give superCDMS a run for (~1% of) their money

C-4: coming up very soon
(x10 mass, 1/3 noise, >10x bckg reduction)

Last week: side-to-side with 1st PPC (2005)

(this, or confirm modulation at 5σ in 1 year)
A search for WIMPs and tests of local dark matter velocity distributions with the CoGeNT public dataset

M. Bellis1, C. Kelso2, J. Collar3, N. Fields3

1Siena College
2University of Utah
3University of Chicago

April APS meeting, Savannah, GA
April. 7th, 2014
Apply templates to data, let parameters float within uncertainties.

Lock down these values in PDFs for later fits.
Backgrounds

Surface events
Slow-pulse L-shell decays
Mostly constrained by K-shell

Neutrons $\left(\frac{n}{n} + \frac{n}{n} \right)$
Muon flux is known

Comptons
Resistors, cosmogenically activated isotopes

Total
Good fit to the data!

M. Bellis April 2014
Backgrounds

Surface events
Slow-pulse
Backgrounds

Surface events
Slow-pulse

L-shell decays
Mostly constrained by K-shell
Backgrounds

Surface events
Slow-pulse

L-shell decays
Mostly constrained by K-shell

Neutrons $(\mu, n) + (\alpha + n)$
Muon flux is known
Backgrounds

Surface events

Slow-pulse

L-shell decays

Mostly constrained by K-shell

Neutrons $(\mu, n) + (\alpha + n)$

Muon flux is known

Comptons

Resistors, cosmogenically activated isotopes

Total

Good fit to the data!
$M_{\text{WIMP}} = 10 \text{ GeV}/c^2$ WIMP signal in Germanium, assuming SHM.
 Streams

Non-thermalized streams of baryonic and dark matter.
$M_{\text{WIMP}} = 15 \text{ GeV}/c^2$ WIMP signal in Germanium, assuming Sagittarius stream ($v=200 \text{ km/s}$, $v_o=25 \text{ km/s}$)
Highlights of ongoing global 2D (energy, time) analysis

• Bulk and surface PDFs derived from simulated data, and separately from electronic pulser. Smooth evolution of PDF parametrization with energy (this required high-enough statistics). Compatible with no low-energy excess in the first case, but excess of low-energy bulk events remains for 2nd.

• Hard to fit a standard halo WIMP to 2D data. This was expected from large magnitude of modulation (and now from superCDMS germanium results...)

• No better luck with DM streams tried.

• Modulation seems concentrated under L-shell EC peaks (?!). Similar to DAMA/LIBRA? Interesting unconstrained possibilities under study (axioelectric DM, in medium environmental effects in EC).

• 5 year data release December 2014 (possibly final, if C-4 in place) should improve sensitivity of this analysis. To be applied ab initio to C-4.
Annual modulation: not a monopoly of WIMPs

A rough decision table:

<table>
<thead>
<tr>
<th></th>
<th>“MAINSTREAM”</th>
<th>“FRINGE”</th>
</tr>
</thead>
<tbody>
<tr>
<td>DM WIMPs</td>
<td>WIMPs (expressed as NRs)</td>
<td>axioelectric, etc. (anything in ERs)</td>
</tr>
<tr>
<td>NOT DM</td>
<td>e.g., in medium effects on EC</td>
<td>any uncontrolled seasonal systematics</td>
</tr>
</tbody>
</table>

It is clearly not the obvious. DAMA/LIBRA taking data with hardware modifications. C-4 to use entirely new electronics, in case.
Annual modulation: not a monopoly of WIMPs

A rough decision table:

<table>
<thead>
<tr>
<th></th>
<th>“MAINSTREAM”</th>
<th>“FRINGE”</th>
</tr>
</thead>
<tbody>
<tr>
<td>DM WIMPs</td>
<td>(expressed as NRs)</td>
<td>axioelectric, etc. (anything in ERs)</td>
</tr>
<tr>
<td>NOT DM e.g., in medium effects on EC</td>
<td>any uncontrolled seasonal systematics</td>
<td></td>
</tr>
</tbody>
</table>

It is clearly not the obvious. DAMA/LIBRA taking data with hardware modifications. C-4 to use entirely new electronics, in case.

Searches for exotica: easy as pie.
Bubble Chambers for Dark Matter

Alan Robinson
PICO Collaboration

CAP Congress Jun 18, 2014
PICASSO & COUPP at SNOLAB

PICASSO
- PICASSO-32
 - Last data Dec '13
- Geyser Detector R&D

COUPP
- COUPP-4kg with CF_3
 - PRD 86, 052001 (2012)
- COUPP-60 first run
 - Last data May '14
- COUPP-60 upgrades
- PICO-2L with C_3F_8
 - Last data May '14
- PICO-250L
- PICASSO-32
 - Last data Dec '13

Last data May '14
Why Bubble Chambers?

They're Scalable

- 2005: First COUPP prototype
- 2007: 1-L bubble chamber
- 2009: COUPP-4 kg at FNAL
- 2010: COUPP-4 kg at SNOLAB COUPP-60 at FNAL
- 2013: COUPP-60 at SNOLAB PICO-2L
- 2016: PICO-250?
Why Bubble Chambers?

Impressive Background Rejection

Acoustic Alpha Discrimination

Gamma Interaction Insensitivity

Multiple Neutron Scattering

Preliminary
Why Bubble Chambers?

Spin-dependent & Low mass
Ability to change target fluid
Radiation induced boiling of superheated fluid.

\[P_g - P_l = \frac{2\sigma}{R_c} \]

\[Q = \frac{4\pi}{3} r_c^3 \rho_b (h_b - h_l) + 4\pi r_c^2 \left(\sigma - T \frac{d\sigma}{dT} \right) \]

Surface Formation

Latent Heat

Bubble Chamber operation cycle

- **Meant expansion time, 39.0°C**
- **36.2°C**
- **33.5°C**
- **Max expansion time**

Boiling Point (33.5°C, 90 psia)
How it works

100fps stereo images

Pressure and Temp monitoring

Fast Pressure Transducer

Acoustic Transducers
How it works

Alphas are ~4 times louder than nuclear recoil bubbles.

>99.4% discrimination against alpha events demonstrated.

Observable bubble ~mm

~50 nm

Daughter heavy nucleus (~100 keV)

~40 μm

Helium nucleus (~5 MeV)
COUPP-4kg at SNOLAB

- First run deep underground.
- Demonstrated 99.4% alpha discrimination

Backgrounds

- \((\alpha,n)\) neutrons from components
- Time-clustered events.
Operational success:

- 10x more massive
- (35 kg of CF$_3$I)
- > 80% live fraction
- No multiple bubble events from neutrons
- Acoustic discrimination confirmed in large chamber
- > 3000 kg-days DM search data collected.
- Time-clustered background:
 - Correlated with temperature ramp
 - Spacially clustered around outside of active volume.
 - Anomalous acoustic power

![Graph showing acoustic power parameter calibration neutrons and recoil-like background](image)
• Suspect background from dust.

• Next steps:
 ► Assay target fluid for particulates.
 ► Installation of in-situ fluid filtration system.
 ► Elimination of sources of particulate
• C_3F_8 filled:
 ▶ Lower threshold
 ▶ Spin-dependent sensitivity
 ▶ Chemically inert

- >300 kg-days exposure.
- Run completed in May.
- Acoustic calorimetry.
- Designed for 250L of C_3F_8 or CF_3 target fluid
- Awaiting funding decision (DOE G2)
- Engineering of components underway