Measuring the Trilinear Higgs Coupling at the LHC

Chung Kao
University of Oklahoma

†Presented at the 37th International Conference on High Energy Physics (ICHEP) in Valencia, Spain, 02—09 July 2014.
Measurement of the Higgs Self Coupling at the LHC

- Introduction
- Higgs Pair Production from Gluon Fusion
- Higgs Pair Production via Bottom Quark Fusion
- The Trilinear Higgs Coupling(s)
- The Discovery Potential of Higgs Pairs at the LHC
- Conclusions
Introduction

• Thus far the results from the LHC indicate that the couplings of the Higgs boson to other particles are consistent with the Standard Model.

• But the ultimate test as to whether this particle is the SM Higgs boson will be the trilinear Higgs coupling that appears in Higgs pair production.

• There are uncertainties in the factorization and renormalization scales as well as variations in the parton distribution functions.
Higgs Pairs Production from Gluon Fusion

• For a light Higgs boson with $M_H < 500$ GeV, the dominant source of Higgs boson pair production is gluon fusion through both triangle and box diagrams.

• The triangle diagram involves the Higgs self-coupling while the box diagrams don’t.

• For a heavy Higgs boson with $M_H \sim 1$ TeV, vector boson can become significant.
Higgs Pairs Production from Gluon Fusion

\[gg \rightarrow hh \]

\[\sigma(pp \rightarrow hh + X)/(fb) \]

- (a) \(\mu_R = \mu_F = M_h \)
- (b) \(\mu_R = \mu_F = \frac{M_h}{2} \)

\[M_h \text{ (GeV)} \]

- Total
- Triangle
- Box
Higgs Pairs Production from Gluon Fusion

Higgs Pair Production in Hadron Collisions

Baglio, Djouadi, Gröber, Mühlleitner, Quevillon, Spira, JHEP 1304 (2013) 151.
NNLO Higgs Pair Production at Hadron Colliders

\[
\sigma_{\text{LO}} = 17.8^{+5.3}_{-3.8} \text{ fb,} \quad \sigma_{\text{NLO}} = 33.2^{+5.9}_{-4.9} \text{ fb,} \\
\sigma_{\text{NNLO}} = 40.2^{+3.2}_{-3.5} \text{ fb,} \quad (18)
\]

<table>
<thead>
<tr>
<th>(E_{\text{c.m.}})</th>
<th>8 TeV</th>
<th>14 TeV</th>
<th>33 TeV</th>
<th>100 TeV</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\sigma_{\text{NNLO}})</td>
<td>9.76 fb</td>
<td>40.2 fb</td>
<td>243 fb</td>
<td>1638 fb</td>
</tr>
<tr>
<td>Scale [%]</td>
<td>+9.0 – 9.8</td>
<td>+8.0 – 8.7</td>
<td>+7.0 – 7.4</td>
<td>+5.9 – 5.8</td>
</tr>
<tr>
<td>PDF [%]</td>
<td>+6.0 – 6.1</td>
<td>+4.0 – 4.0</td>
<td>+2.5 – 2.6</td>
<td>+2.3 – 2.6</td>
</tr>
<tr>
<td>PDF + (\alpha_S) [%]</td>
<td>+9.3 – 8.8</td>
<td>+7.2 – 7.1</td>
<td>+6.0 – 6.0</td>
<td>+5.8 – 6.0</td>
</tr>
</tbody>
</table>
Higgs Pair Production via Bottom Quark Fusion

- In the Standard Model, bottom quark fusion is almost negligible for Higgs pair production.
- In two Higgs doublet models with Type II Yukawa interactions, the H_{bb} coupling is enhanced by a large value of $\tan\beta$. Thus for $\tan\beta > 7$, bottom quark fusion makes dominant contribution.
- The physical process is gg to $bbHH$.
- However, it is a good approximation to calculate bb to HH if no associate b quarks are tagged.
Higgs Pair Production via Bottom Quark Fusion

QCD CORRECTIONS TO $bb \rightarrow hh$

- **Next-to-Leading Order Corrections**
 - α_s Corrections: Virtual Correction
 - α_s Corrections: Real Emission, $bb \rightarrow hhg$
 - $1/\Lambda$ Corrections: $bg \rightarrow bhh$ [$\Lambda = \ln (m_h/m_b)$]
 - $gg \rightarrow bbhh$ Cross Section ($1/\Lambda^2$)
NLO Corrections to $bb \rightarrow hh$
NLO Corrections to $bb \rightarrow \phi\phi$ in MSSM
The Trilinear Higgs Coupling(s)

- Higgs pair production from gluon fusion involves ttH and HHH couplings.
- The box and triangle diagrams are separately gauge invariant so we can vary the two couplings independently by introducing parameters κ_t and κ or κ_H,

\[ttH : \quad - \frac{m_t}{v} \kappa_t \]
\[HHH : \quad - \frac{3 M_H^2}{v} \kappa \]
Effects of kappa with $\kappa > 0$

$\sqrt{s} = 14$ TeV, $K = 1.9$
Effects of kappa with $\kappa < 0$

$\sqrt{s} = 14$ TeV, $K = 1.9$

![Graph showing effects of kappa with $\kappa < 0$. The graph illustrates the cross-section $\sigma(pp \rightarrow H^0H^0 \pm X)$ (fb) as a function of κ, with different contributions labeled as 'Total', 'Box', and 'Triangle'.]
Uncertainties in Cross Section

$\sqrt{s} = 14$ TeV

$\sigma(\text{pp} \rightarrow H^0H^0 + X)$ (fb)

κ
Uncertainties in Cross Section

\[\sqrt{s} = 100 \text{ TeV} \]
The Discovery Potential of Higgs Pairs

Conclusions

Goertz, Papaefstathiou, Yang and Zurita, JHEP 1306 (2013) 016;

- The $bb\gamma\gamma$, $bb\tau\tau$, $bbWW$ and $bbbb$ final states are promising channels to measure the Higgs trilinear coupling(s) at the LHC.

- LHC data at 7–8 TeV should probe large deviations of λ_{hhh} from the SM ($\kappa_h > 7.5$ at 95% C.L.).

- At the LHC with a CM energy of 14 TeV and an integrated luminosity of 3 ab$^{-1}$, ATLAS and CMS will be able to measure λ_{hhh} within 20%–40% uncertainty.