Searches for new Physics in events with multiple leptons with the ATLAS detector

Luca.Fiorini@cern.ch
(IFIC - U. of Valencia - CSIC)
on behalf of ATLAS collaboration

ICHEP14 Conference
Valencia, 3rd of July 2014
Many models predict Beyond Standard Model (BSM) physics with final states with leptons. Leptons are clean probes for new particles with good signal over background (S/B) ratio at hadron colliders. Typically new particles production is predicted to happen in pairs → expect large multiplicity of leptons in the final states.

Covered in this talk: All 8 TeV results!

• Model Independent:
 • 3 or more leptons searches

• Model testing:
 • WZ resonances
 • Excited Leptons
 • Type III seesaw

Event with 2 reconstructed muons and 1 photon
Multilepton searches

Reference: ATLAS-CONF-2013-070

• General Selection criteria:
 • Events with at least 3 charged, prompt and isolated leptons:
 $\geq 3 \, e/\mu$ and $2 \, e/\mu + =1 \tau$
 • Leading lepton: $p_T > 26 \, \text{GeV}$
 • Other leptons: $p_T > 15 \, \text{GeV}$
 • $p_T(\tau_{\text{had}}) > 20 \, \text{GeV}$

• Categories:
 1) On-Z 3e/µ
 2) On-Z 2 e/µ + τ_{had}
 3) Off-Z 3e/µ
 4) Off-Z 2 e/µ + τ_{had}

92 Signal Regions in total:

<table>
<thead>
<tr>
<th>Variable</th>
<th>Signal Region Definition</th>
<th>Additional Requirements</th>
</tr>
</thead>
<tbody>
<tr>
<td>$H_T^{\ell\ell}$</td>
<td>Inclusive</td>
<td>$\geq 200 , \text{GeV}$</td>
</tr>
<tr>
<td>Min. p_T^{ℓ}</td>
<td>Inclusive</td>
<td>$\geq 50 , \text{GeV}$</td>
</tr>
<tr>
<td>E_T^{miss}</td>
<td>Inclusive</td>
<td>$\geq 100 , \text{GeV}$</td>
</tr>
<tr>
<td>m_{eff}</td>
<td>Inclusive</td>
<td>$\geq 600 , \text{GeV}$</td>
</tr>
<tr>
<td>m_{eff}</td>
<td>Inclusive</td>
<td>$\geq 600 , \text{GeV}$</td>
</tr>
<tr>
<td>b-tags</td>
<td>Inclusive</td>
<td>≥ 1</td>
</tr>
</tbody>
</table>

Selection variables:

1) $H_T^{\ell\ell}$: Sum of 3 lepton p_T
2) H_T^{jets}: Sum of all jet p_T
3) ETmiss: Missing transverse energy
4) meff: $H_T^{\ell\ell}$ + H_T^{jets} + ETmiss
5) Min. $p_T(\ell)$: p_T of 3rd lepton
6) b-tags: number of b-tagged jets

on-Z: $|m_{tt} - m_Z| < 20 \, \text{GeV}$

off-Z: $|m_{tt} - m_Z| > 20 \, \text{GeV}$

• Backgrounds:
 • Irreducible: WZ/ZZ (tt+W/Z,Zγ)
 • Reducible: W/Z+jets, tt
Multileptons Control Regions

- tt control region defined by the presence of 2 same sign e/μ and 1 b-tagged jet.
- $H_T^{jets} < 500$ GeV cut to reduce eventual contamination of new physics.
- Main background is composed by tt $l+$jets decay mode.

- $Z \rightarrow \tau_\mu \tau_{had}$ control region is defined by presence of two same sign leptons: $\mu + \tau$
- $H_T^{jets} < 500$ GeV cut to reduce eventual contamination of new physics.
Irreducible backgrounds are dominant in the 3 e/µ signal regions.

WZ/ZZ backgrounds modelled by Sherpa generator.

Reducible backgrounds (with fake leptons) are larger in the 2 e/µ + τ signal regions.

They are modelled with data-driven methods, in control regions were the lepton identification criteria are relaxed.
Multileptons Results

Deviation from expected yields divided by total uncertainty

- Fiducial efficiencies (ε_{fid}) are also given as a function of the p_T and η of all leptons along with instructions to calculate upper limits on the cross section of specific model testing.

$$\sigma_{95}^{\text{fid}} = \frac{N_{95}}{(\varepsilon_{\text{fid}} \cdot \int L \, dt)}$$

- All tables made available as HEPDATA and RIVET code.
Testing of Specific Models

- **WZ resonances:** EXOT-2013-07 (arXiv:1406.4456)
- **Excited Leptons:** New J. Phys. 15 (2013) 093011
- **Type III seesaw:** ATLAS-CONF-2013-019
Motivation:

- Many NP theories predict diboson resonances at high mass: GUT, Little Higgs, Extended Gauge Model, Heavy Vector Triplet and Extra Dimensions among others.

General Selection Criteria:

- 3 e/µ selected with $p_T > 25$ GeV and event $E_{T}^{\text{miss}} > 25$ GeV
- $|m_{\ell\ell} - m_Z| < 20$ GeV is required for a pair of same flavour, different charge leptons.
- $\Delta y(W,Z) < 1.5$ to increase signal to background ratio.
- Low Mass (High Mass) region defined by $\Delta \varphi(\ell, E_{T}^{\text{miss}}) > 1.5 (< 1.5)$

SM Background:

- VV and ttV (estimated from MC, but checked in WZ Control Region)
- $Z\gamma$ modelled by MC (Sherpa)
- Z+jets, ttbar, and other $\ell\ell$+jets sources, where a jet is misidentified as a lepton are estimated from data.
- SM WZ production is the main background.
- \(W' \rightarrow WZ \) final state expectations are superimposed.
- Good agreement between data and predictions in the signal regions.
- No significant excess is observed.
95% Confidence Limits are set as a function of m_{WZ}

- $W' \rightarrow WZ$ limit and HVT are explicitly derived:
 - $M_{W'} > 1.52$ TeV @ 95% CL
 - HVT mass limits for the 3 chosen benchmark models
Excited Leptons

General Selection Criteria:
• Assume excited leptons (ℓ^*) are produced in contact interactions, hence their masses must be less than the compositeness scale Λ.
• Looking for events $pp \rightarrow \ell\ell^* \rightarrow \ell\ell\gamma$

SM Background:
• $Z + \text{jets}$ (MC sample normalised in CR to account for misidentification of jets as photons)
• $Z + \gamma$ (MC)
tt and diboson processes (MC)
• $W + \gamma + \text{jets}$ (MC sample normalised with a likelihood fit to account for the misidentification of jets to electrons)
Excited Leptons Selection

Electrons
- Electron $p_T > 40(30)$ GeV for leading (subleading)
- Electron (muon) $|\eta| < 2.47$
- Electron candidates are "medium"
- Isolated and prompt
- No jet overlap

Muons
- Muon $p_T > 25$ GeV for both
- Muon $|\eta| < 2.5$
- Isolated and prompt
- No jet overlap

Photons
- Photon $p_T > 30$ GeV
- Photon $|\eta| < 2.37$
- Photon candidates are "tight"
- Well Isolated
- No jet overlap

Selection Criteria
- Z-veto ($m_{\ell\ell} > 110$ GeV)
- $m_{\ell\ell\gamma} > 1050$ GeV for $m_{\ell\ast} \geq 900$ GeV
- $m_{\ell\ell\gamma} > m_{\ell\ast} + 150$ GeV for $m_{\ell\ast} < 900$ GeV

<table>
<thead>
<tr>
<th>Samples</th>
<th>Regions (GeV)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>$70 < m_{ee} < 110$</td>
</tr>
<tr>
<td>$Z + \gamma$</td>
<td>1235 ± 25</td>
</tr>
<tr>
<td>$Z + jets$</td>
<td>371 ± 48</td>
</tr>
<tr>
<td>$t\bar{t}$, diboson</td>
<td>18 ± 1</td>
</tr>
<tr>
<td>$W + \gamma + jets$</td>
<td>9 ± 9</td>
</tr>
<tr>
<td>Total MC</td>
<td>1633 ± 55</td>
</tr>
<tr>
<td>Data</td>
<td>1633</td>
</tr>
</tbody>
</table>
Excited Leptons Results

For $\Lambda = m_{\ell^*}$, excited-electron and excited-muon masses below 2.2 TeV are excluded.
Motivations:
- Mechanisms to extend the SM for neutrino mass generation:
 - Introduce Majorana and Dirac mass terms, seesaw mechanism to explain neutrinos light mass:
 - Type I: at least two additional ν_R heavy neutrinos
 - Type II: masses generated in the Higgs sector adding additional Higgs triplet
 - Type III: introduced one or more leptonic triplets

• Selection criteria:
 - 5.8 fb^{-1} at 8 TeV is used
 - $Z(\ell\ell)+2\ell$ with $p_T > 25,10,10,10$ GeV
 - N^+ is fully reconstructed:
 - Same flavour $\ell^+\ell^-$ with $|m_Z-m_\ell|<10$ GeV
 - third lepton is the closest in phi to the Z
 - Events with a second Z candidate are rejected to reduce diboson background.
Heavy Leptons backgrounds

SM Backgrounds:
- ZZ production (MC normalised to data in CR)
- VVV production (MC)
- ttV and Z+ jets (MC)

- ZZ CR defined by reverting the second Z-boson veto
Results:

- Scenario of maximum allowed mixing angles with SM leptons.
- Exclusion limit on m_N is 245 GeV.
- Limits are also set for different N^0,\pm BR hypothesis and mass:
 - It translates in limits on m_N between 230 and 350 GeV
Summary

- Prompt isolated leptonic final states are excellent probes for BSM physics.

- Both inclusive searches and specific searches for New Physics models are being performed with ATLAS data.

- ATLAS recent result on WZ resonances interpreted in terms of W' exclusion.

- Model-independent 3 or more lepton searches do not reveal BSM yet
- Your favourite model not shown here?
 → use our RIVET routines for quick tests.
 - Rivet link HEPDATA link

- New Physics has not been observed yet at LHC 7-8 TeV.

- Looking forward for LHC Run2 with $E_{CM} \geq 13$ TeV!
Bonus Slides
Excited Leptons Control Regions

- \(Z^+ g \) CR defined by \(70 < m_{\ell\ell} < 110 \) GeV
Heavy Lepton Selection

Leptons

- Lead Lepton $p_T > 25$ GeV (in order to pass trigger)
- Three subleading leptons $p_T > 10$ GeV
- Electron (muon) $|\eta| < 2.47(2.5)$
- Electron candidates are "tight"
- Muon candidates have combined tracks (ID and MS)
- Isolated and prompt
- No jet overlap

Selection Criteria

- Lead Lepton $p_T > 25$ GeV (in order to pass trigger)
- Three subleading leptons $p_T > 10$ GeV
- Electron (muon) $|\eta| < 2.47(2.5)$
- Electron candidates are "tight"
- Muon candidates have combined tracks (ID and MS)
- Isolated and prompt
- No jet overlap
Motivation:
• Many NP final states have same-sign isolated prompt leptons: doubly charged Higgs, W_R decays, b'b' decays among others.

General Selection Criteria:
• $e^±e^±$, $\mu^±\mu^±$ pairs are selected with lepton p_T > 20 GeV (25 GeV for the leading electron).
• $m_{\ell\ell}$ > 15 GeV, 70 < m_{ee} < 110 GeV is vetoed to reject the large background from misidentified charge.

SM Background:
• With same sign leptons: VV and $t\bar{t}V$ (estimated from MC)
• With opposite sign or misidentified leptons: Z+jets, ttbar, $W(\gamma)+$jets (charge and lepton misidentification estimated from data).
Good agreement between data and predictions in the signal regions.

Events with a misidentified charge are the main backg. in the ee final state, while WZ with prompt same-sign leptons are the dominant background in $\mu\mu$ and $e\mu$ channels.

No significant excess is observed.
Same-sign Results

- 95% Confidence Limits are converted into fiducial cross section limits

\[\sigma_{95}^{\text{fid}} = \frac{N_{95}}{\epsilon_{\text{fid}} \cdot \int L dt} \]

- Fiducial efficiencies vary from 43-72%
- Table and fiducial data available for specific model testing (UED, seesaw, vector-like quarks, Zee-Babu models, etc...).

- H^{++} limits are explicitly derived:
 - \(H^{\pm \pm}_L \) mass > 409 GeV 95% CL
 - \(H^{\pm \pm}_R \) mass > 322 GeV 95% CL