Searches for direct pair production of third generation squarks with the ATLAS detector

João Firmino da Costa
(IRFU, CEA-Saclay)

on behalf of the ATLAS collaboration
Supersymmetry (SUSY) is a very predictive set of models that describe the SM and beyond SM physics.

FCNC supression favors heavy 1st and 2nd generation squarks (lower bounds from LHC > 1 TeV)

We have a « recent » observation ($m_H = 125.5$ GeV)

Naturalness arguments favor the 3rd generation squarks to be « light » (< 1 TeV)

Strong physics case to search for 3rd generation squarks

Here will be presented final results for direct top/bottom squark pair production searches at the LHC with the full ATLAS 2012 8 TeV dataset (20.3 fb$^{-1}$)
Direct top squark pair production
All-hadronic final state searches

Model

\(\tilde{t}_1 \) can decay to \(t \tilde{\chi}_1^0 \) or \(b \tilde{\chi}_1^+ \)

\[m(\tilde{\chi}_1^+) = 2m(\tilde{\chi}_1^0) \]

6 jets (2 being bjets) expected at leading order

Selections

in common 2\(^+\) bjets, 0 leptons, missing transverse energy

- 6 jets (modes A, B)
- 4-5 «fatter» (\(\Delta R = 0.8, 1.2 \)) jets (boosted W in A)
- 5 jets (lost jet in B due to small \(\Delta m(\tilde{\chi}_1^+, \tilde{\chi}_1^0) \))

Important discriminant variable:

\[m_{T}^{b,\text{min}}(A \text{ and } B) \]

\[m_{T}^{b,\text{min}} = \sqrt{2 p_{T}^{b} E_{T}^{\text{miss}} \left[1 - \cos \Delta \phi (p_{T}^{b}, p_{T}^{\text{miss}}) \right]} > 175 \text{ GeV} \]
All-hadronic final state searches

Background control and Results

\textbf{ttbar, Z+jets, W+jets :}
Yield correction estimated with background enriched data samples (Control Regions)

CLs approach used for fits

\begin{figure}
\centering
\includegraphics[width=\textwidth]{figure.png}
\end{figure}

\textbf{Limits}

All limits at 95 \% CL

\begin{figure}
\centering
\includegraphics[width=\textwidth]{figure.png}
\end{figure}
Models

stop decays which involve 1 lepton in the final state are generic enough to target several different processes

Overview

Selection: 1 lepton, 2 b-jets, 2 jets, missing transverse energy (MET)
Strategy: Dedicated analysis strategies to target various scenarios → 15 signal regions
Hypothesis testing: done with « cut and count » and « shape-fit » techniques
1 lepton, jets and Missing Transverse momentum searches

SM adjustments and validation

Transverse mass (m_T) used to separate data samples enriched in background or signal.

Correction factors for background estimates checked with dedicated validation regions.

Limits

Prefered region from LHC W+W** excess (arXiv:1406.0848[hep-ph])

Summary of comparisons in validation regions
Compressed spectra searches

Model

Compressed spectra
\(\Delta M(\tilde{t}_1, \chi_1) < m(W) + m(b) \)

Rich physics decay chains:
- Loop diagram stop to charm
 \(\tilde{t}_1 \rightarrow b f f' \chi_1 \)

Expect soft jets and soft lepton
Use initial state radiation jets to improve signal purity

Limits

ATLAS

- c-tagged + monojet-like selection
- \(\tilde{t}_1 \) production, \(\text{BR}(\tilde{t}_1 \rightarrow c \chi_1^0) = 1 \)

\[\int L \, dt = 20.3 \, \text{fb}^{-1}, \, \sqrt{s} = 8 \, \text{TeV} \]

- Observed limit (\(\pm 1 \sigma_{\text{SUSY}} \))
- Expected limit (\(\pm 1 \sigma_{\text{exp}} \))
- LEP (\(\theta = 0^\circ \))
- CDF (2.6 \(\text{fb}^{-1} \))

All limits at 95% CL

ATLAS

- monojet-like selection: M1, M2, M3
- \(\tilde{t}_1 \) production, \(\text{BR}(\tilde{t}_1 \rightarrow b f f' \chi_1^0) = 1 \)

\[\int L \, dt = 20.3 \, \text{fb}^{-1}, \, \sqrt{s} = 8 \, \text{TeV} \]

- Observed limit (\(\pm 1 \sigma_{\text{SUSY}} \))
- Expected limit (\(\pm 1 \sigma_{\text{exp}} \))

All limits at 95% CL

See talk from Robert SCHOEFBECK
See dedicated poster from Roger Caminal
Overview

If \(\Delta m(\tilde{t}_1, \tilde{\chi}_1^0) \) close to \(m(\text{top}) \), stop signature is very similar to SM ttbar production.

If \(\tilde{t}_2 \) is not too heavy, its decay to \(\tilde{t}_1 \) via \(Z/h \) can be observed

Selection: 3 leptons (1Z), 5+(jets)(1bjet), MET

Limits

1st direct limits of \(\tilde{t}_2 \) at the LHC

\[m(\tilde{t}_2) < 600 \text{ GeV} \]
for \(m(\tilde{\chi}_1) < 200 \text{ GeV} \)

Same analysis used to interpret \(\tilde{t}_1 \rightarrow \) gravitino model
Direct bottom squark pair production
3 b-jet searches

Looking for scenarios where the \(\tilde{b} \) only decays via \(\tilde{\chi}^0 \)

Simplified model
\(m(\tilde{\chi}^0) = 60 \text{ GeV} \)

Selection:
4+ jets (3+ bjets), MET

Jets, 2-3 leptons search

In scenarios with a light stop_L, sbottom_L may be light from SM weak-isosping symmetry.

2 simplified models studied
\(m(\tilde{\chi}^0) = 60 \text{ GeV} \)
\(m(\tilde{\chi}^+_1) = 2 \times m(\tilde{\chi}^0) \)

\(m(\tilde{b}) < 440 \text{ GeV} \) excluded.
No excess from SM is found so far.
For $\tilde{t}_1 \to t \tilde{\chi}_1^0$, $m(\tilde{t}_1) < 680$ GeV (for $m(\tilde{\chi}_1^0) \sim 0$ GeV) is excluded.

<table>
<thead>
<tr>
<th>Status: ICHEP 2014</th>
</tr>
</thead>
<tbody>
<tr>
<td>$L_{\text{int}} = 20$ fb$^{-1}$ $\sqrt{s}=8$ TeV</td>
</tr>
<tr>
<td>$L_{\text{int}} = 4.7$ fb$^{-1}$ $\sqrt{s}=7$ TeV</td>
</tr>
<tr>
<td>0L [1406.1122]</td>
</tr>
<tr>
<td>1L [1407.0583]</td>
</tr>
<tr>
<td>2L [1403.4853]</td>
</tr>
<tr>
<td>1L [1407.0583], 2L [1403.4853]</td>
</tr>
<tr>
<td>0L [1407.0608]</td>
</tr>
<tr>
<td>0L [1407.0608], 1L [1407.0583]</td>
</tr>
</tbody>
</table>

![Graph](image)
No excess from SM is found so far. For $\tilde{t}_1 \to t \tilde{\chi}_1^0$, $m(\tilde{t}_1) < 680$ GeV (for $m(\tilde{\chi}_1^0) \sim 0$ GeV) is excluded.

Re-interpretation of $t\bar{t}$ pair production in terms of \tilde{t}_1 pair production with 1 GeV $\tilde{\chi}_1^0$.
No excess from SM is found so far.

For $\tilde{t}_1 \rightarrow t \tilde{\chi}_1^0$, $m(\tilde{t}_1) < 680$ GeV (for $m(\tilde{\chi}_1^0) \sim 0$ GeV) is excluded.
Looking forward for Run II with increased center of mass energy and increased luminosity.
Backup
All-hadronic final state searches

Common selection

<table>
<thead>
<tr>
<th>Trigger</th>
<th>E_T^{miss}</th>
</tr>
</thead>
<tbody>
<tr>
<td>N_{lep}</td>
<td>0</td>
</tr>
<tr>
<td>b-tagged jets</td>
<td>≥ 2</td>
</tr>
<tr>
<td>E_T^{miss}</td>
<td>> 150 GeV</td>
</tr>
<tr>
<td>$</td>
<td>\Delta\phi (\text{jet, } p_T^{\text{miss}})</td>
</tr>
<tr>
<td>$</td>
<td>\Delta\phi (p_T^{\text{miss}}, p_T^{\text{miss,track}})</td>
</tr>
<tr>
<td>$m_{b,\text{min}}$</td>
<td>> 175 GeV</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>SRA1</th>
<th>SRA2</th>
<th>SRA3</th>
<th>SRA4</th>
</tr>
</thead>
<tbody>
<tr>
<td>anti-k_t, $R = 0.4$ jets</td>
<td>≥ 6, $p_T > 80, 80, 35, 35, 35, 35$ GeV</td>
<td></td>
<td></td>
</tr>
<tr>
<td>$m_{b, jj}^0$</td>
<td>< 225 GeV</td>
<td>[50,250] GeV</td>
<td></td>
</tr>
<tr>
<td>$m_{b, jj}^1$</td>
<td>< 250 GeV</td>
<td>[50,400] GeV</td>
<td></td>
</tr>
<tr>
<td>$\min[m_T (\text{jet}^i, p_T^{\text{miss}})]$</td>
<td>–</td>
<td>> 50 GeV</td>
<td></td>
</tr>
<tr>
<td>τ veto</td>
<td>yes</td>
<td></td>
<td></td>
</tr>
<tr>
<td>E_T^{miss}</td>
<td>> 150 GeV</td>
<td>> 250 GeV</td>
<td>> 300 GeV</td>
</tr>
</tbody>
</table>
All-hadronic final state searches

<table>
<thead>
<tr>
<th></th>
<th>SRB1</th>
<th>SRB2</th>
</tr>
</thead>
<tbody>
<tr>
<td>anti-k_t $R = 0.4$ jets</td>
<td>4 or 5, $p_T > 80, 80, 35, 35, (35)$ GeV</td>
<td>5, $p_T > 100, 100, 35, 35, 35$ GeV</td>
</tr>
<tr>
<td>Δm_b</td>
<td>< 0.5</td>
<td>> 0.5</td>
</tr>
<tr>
<td>$p_{T,\text{jet},R=1.2}$</td>
<td>-</td>
<td>> 350 GeV</td>
</tr>
<tr>
<td>$m_{\text{jet},R=1.2}$</td>
<td>> 80 GeV</td>
<td>[140, 500] GeV</td>
</tr>
<tr>
<td>$m_{\text{jet},R=1.2}$</td>
<td>[60, 200] GeV</td>
<td>-</td>
</tr>
<tr>
<td>$m_{\text{jet},R=0.8}$</td>
<td>> 50 GeV</td>
<td>[70, 300] GeV</td>
</tr>
<tr>
<td>m_T^{min}</td>
<td>> 175 GeV</td>
<td>> 125 GeV</td>
</tr>
<tr>
<td>$m_T (\text{jet}^3, p_T^{\text{miss}})$</td>
<td>> 280 GeV for 4-jet case</td>
<td>-</td>
</tr>
<tr>
<td>$E_T^{\text{miss}} / \sqrt{H_T}$</td>
<td>-</td>
<td>$> 17 \sqrt{\text{GeV}}$</td>
</tr>
<tr>
<td>E_T^{miss}</td>
<td>> 325 GeV</td>
<td>> 400 GeV</td>
</tr>
</tbody>
</table>

SRC1

<table>
<thead>
<tr>
<th></th>
<th>SRC1</th>
<th>SRC2</th>
<th>SRC3</th>
</tr>
</thead>
<tbody>
<tr>
<td>anti-k_t $R = 0.4$ jets</td>
<td>5, $p_T > 80, 80, 35, 35, 35$ GeV</td>
<td></td>
<td></td>
</tr>
<tr>
<td>$</td>
<td>\Delta\phi (b, b)</td>
<td>$</td>
<td></td>
</tr>
<tr>
<td>$m_{T,\text{min}}^b$</td>
<td>> 185 GeV</td>
<td>> 200 GeV</td>
<td>> 200 GeV</td>
</tr>
<tr>
<td>$m_{T,\text{max}}^b$</td>
<td>> 205 GeV</td>
<td>> 290 GeV</td>
<td>> 325 GeV</td>
</tr>
<tr>
<td>τ veto</td>
<td></td>
<td>yes</td>
<td></td>
</tr>
<tr>
<td>E_T^{miss}</td>
<td>> 160 GeV</td>
<td>> 160 GeV</td>
<td>> 215 GeV</td>
</tr>
</tbody>
</table>
All-hadronic final state searches

<table>
<thead>
<tr>
<th></th>
<th>VRA1</th>
<th>VRA2</th>
<th>VRB</th>
<th>VRC1</th>
<th>VRC2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Observed events</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total SM</td>
<td>189 ± 26</td>
<td>50 ± 6</td>
<td>70 ± 19</td>
<td>110 ± 12</td>
<td>21.1 ± 2.9</td>
</tr>
<tr>
<td>$t\bar{t}$</td>
<td>170 ± 27</td>
<td>34 ± 7</td>
<td>60 ± 19</td>
<td>93 ± 12</td>
<td>17.3 ± 2.8</td>
</tr>
<tr>
<td>Z + jets</td>
<td>4.0 ± 1.1</td>
<td>1.5 ± 0.4</td>
<td>1.5 ± 0.5</td>
<td>6.9 ± 1.5</td>
<td>0.24 ± 0.20</td>
</tr>
<tr>
<td>W + jets</td>
<td>2.8 ± 1.2</td>
<td>4.8 ± 2.2</td>
<td>2.1 ± 1.4</td>
<td>3.9 ± 1.8</td>
<td>1.1 ± 0.5</td>
</tr>
<tr>
<td>Others</td>
<td>11.8 ± 3.1</td>
<td>9.1 ± 2.2</td>
<td>7.2 ± 2.5</td>
<td>6.7 ± 2.0</td>
<td>2.4 ± 0.7</td>
</tr>
<tr>
<td>Fitted background events</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Figure 9. Exclusion contours at 95\% CL in the scenario where the top squarks are allowed to decay via $\tilde{t}\rightarrow b\tilde{c}^{\pm}$. The \tilde{c}^{\pm} mass is fixed to twice the \tilde{c}^{0} mass, and the grey filled areas correspond to the LEP limit of 103.5 GeV on the lightest chargino mass \[66\text{–}97\text{–}100\text{].} (a) Expected and observed limits for $B_{\tilde{t} \rightarrow \tilde{c}^{0}} = 50\%$. The blue dashed line indicates the expected limit, and the yellow band indicates the $\pm 1\sigma$ uncertainties, which include all uncertainties except the theoretical uncertainties in the signal. The red solid line indicates the observed limit, and the red dotted lines indicate the sensitivity to $\pm 1\sigma$ variations of the signal theoretical uncertainties. (b) The observed and expected exclusion contours are shown for $B_{\tilde{t} \rightarrow \tilde{c}^{0}}$ values from 0\% (inner contours) to 100\% (outer contours). For each branching fraction, the observed (solid line) and expected (dashed line) limits are displayed.
1 lepton, jets and Missing Transverse momentum searches

ATLAS

- **\(\tilde{t}\tilde{t} \) production, \(\tilde{t} \rightarrow t \tilde{\chi}^0_1 / b \tilde{\chi}^{\pm}_1, \tilde{\chi}^+_1 \rightarrow W^+ \chi_1^0 \), \(m_{\tilde{t}} = 2 m_{\chi_1^0} \)**

- **Integral** \(\int L \, dt = 20 \text{ fb}^{-1}, \sqrt{s} = 8 \text{ TeV} \)

- **1-lepton + jets + \(E_T^{\text{miss}} \)**

Observed limits and **Expected limits**

- **All limits at 95% CL**
1 lepton, jets and Missing Transverse momentum searches

\[1\text{-lepton} + \text{jets} + E_{T}^{\text{miss}} \]

pMSSM models:
- \(m(\tilde{t}_1, \tilde{\chi}_1^0) \approx (400,50) \text{ GeV} \)
- \(m(\tilde{t}_1, \tilde{\chi}_1^0) \approx (550,50) \text{ GeV} \)
- \(m(\tilde{t}_1, \tilde{\chi}_1^0) \approx (550,150) \text{ GeV} \)

Simplified models:
- \(m(\tilde{t}_1, \tilde{\chi}_1^0) = (400,50) \text{ GeV} \)
- \(m(\tilde{t}_1, \tilde{\chi}_1^0) = (550,50) \text{ GeV} \)

\[x = \text{BR}(\tilde{t}_1 \rightarrow t\chi_1^0) \]

ATLAS
- \(\int L \, dt = 20 \text{ fb}^{-1} \)
- \(\sqrt{s} = 8 \text{ TeV} \)
ttbar + Z(h) + E_{miss} T searches
Gravitinos

Naturalness requires higgsino to be light

If gravitino is LSP, then the decay of higgsino to gravitino (via h,Z) gives similar signature. The stop2 analysis is re-interpreted in this scenario

Results combined with 2L Signal regions.
Overview

In scenarios with a light stop L, sbottom$_L$ may be light from SM weak-isosping symmetry.

Selection:
SS(3L), $3^+ + b$, $m_{\text{eff}}, \text{MET}$

Main bkgs estimation
Prompt leptons: $t\bar{t} + V, VV$ (from MC validated in special regions)
Fake-leptons: Matrix method

Results and Limits

2 simplified models studied
$m(\chi_{10}) = 60 \, \text{GeV}$
$m(\chi_{1+}) = 2 \times m(\chi_{10})$

Simultaneous fit to Signal regions (profile likelihood)

$m(\text{sbottom}) > 440 \, \text{GeV}$ at 95% CL
Model

sbottom decays only to $b ~ \chi_1^0$

Expect 2 b-jets and significant missing transverse momentum

Use initial state radiation jets to improve signal purity

Limits

FIG. 11: Exclusion plane at 95% CL as a function of sbottom and neutralino masses for the decay channel $\tilde{b}_1 \rightarrow b + \tilde{\chi}_1^0$ (BR=100%). The observed (red line) and expected (blue line) upper limits from this analysis are compared to previous results from CDF \[28\], D0 \[29\], and ATLAS \[22\]. For the latter, the area below the dashed-dotted line is excluded. The dotted lines around the observed limit indicate the range of observed limits corresponding to $\pm 1\sigma$ variations on the NLO SUSY cross-section predictions. The shaded area around the expected limit indicates the expected $\pm 1\sigma$ ranges of limits in the absence of a signal.

For $m_{\tilde{b}_1} - m_{\tilde{\chi}_1} - m_b < 2$ GeV indicates the region in the phase space for which the sbottom can become long-lived.
Compressed spectra searches

Model

Compressed spectra
\(\Delta M(\tilde{t}_1, \chi_1) < m(W) + m(b)\)

Rich physics decay chains:
Loop diagram stop to charm
\(\tilde{t}_1 \rightarrow b f f' \tilde{\chi}_1\)

Expect soft jets and soft lepton
Use initial state radiation jets to improve signal purity

Selections

- 4\(^+\) loose c-tagged jets with 1 tighter c-tagged jet (A)
- 3\(^-\) jets (B)
- 1\(^+\) energetic jet (A, B)

Discriminating variables:
MET, 0 leptons, \(\Delta\phi(\text{jet,MET})\)

charm-quark tagging inputs:
Impact parameter of displaced tracks
Topological information of 2\(^{nd}\) 3rd vertices within jet
Jets and same-sign leptons or 3 leptons searches

<table>
<thead>
<tr>
<th>SR</th>
<th>Leptons</th>
<th>N_b--jets</th>
<th>Other variables</th>
<th>Additional requirement on m_{eff}</th>
</tr>
</thead>
<tbody>
<tr>
<td>SR1b</td>
<td>SS</td>
<td>≥ 1</td>
<td>$N_{\text{jets}} \geq 3$, $E_{T}^{\text{miss}} > 150$ GeV, $m_T > 100$ GeV, SR3b veto</td>
<td>$m_{\text{eff}} > 700$ GeV</td>
</tr>
<tr>
<td>SR3Llow</td>
<td>3L</td>
<td>-</td>
<td>$N_{\text{jets}} \geq 4$, $50 < E_{T}^{\text{miss}} < 150$ GeV, Z boson veto, SR3b veto</td>
<td>$m_{\text{eff}} > 400$ GeV</td>
</tr>
<tr>
<td>SR3Lhigh</td>
<td>3L</td>
<td>-</td>
<td>$N_{\text{jets}} \geq 4$, $E_{T}^{\text{miss}} > 150$ GeV, SR3b veto</td>
<td>$m_{\text{eff}} > 400$ GeV</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Background</th>
<th>Method</th>
<th>SR1b</th>
<th>SR3Llow</th>
<th>SR3Lhigh</th>
</tr>
</thead>
<tbody>
<tr>
<td>Charge-flip</td>
<td>Nominal</td>
<td>0.5 ± 0.1</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>Tag and probe</td>
<td>0.5 ± 0.2</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Fake</td>
<td>Nominal</td>
<td>$0.8^{+1.2}_{-0.8}$</td>
<td>1.6 ± 1.6</td>
<td>< 0.1</td>
</tr>
<tr>
<td></td>
<td>Monte Carlo based</td>
<td>$0.6^{+1.4}_{-0.6}$</td>
<td>$1.0^{+0.8}_{-0.7}$</td>
<td>< 0.1</td>
</tr>
<tr>
<td>Total 3 b-jets</td>
<td>Nominal</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>b-jets matrix method</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>
3 b-jet searches

Baseline 0-lepton selection: lepton veto, $p_T^{j_1} > 90$ GeV, $E_T^{\text{miss}} > 150$ GeV,
≥ 4 jets with $p_T > 30$ GeV, $\Delta\phi_{\text{min}}^{4j} > 0.5$, $E_T^{\text{miss}}/m_{\text{eff}}^{4j} > 0.2$, ≥ 3 b-jets with $p_T > 30$ GeV

<table>
<thead>
<tr>
<th>N jets (p_T [GeV])</th>
<th>E_T^{miss} [GeV]</th>
<th>m_{eff} [GeV]</th>
<th>$E_T^{\text{miss}}/\sqrt{H_T^{4j}}$ [\sqrt{\text{GeV}}]</th>
</tr>
</thead>
<tbody>
<tr>
<td>SR-0\ell-4j-A</td>
<td>≥ 4 (50)</td>
<td>> 250</td>
<td>m_{eff}^{4j} > 1300</td>
</tr>
<tr>
<td>SR-0\ell-4j-B</td>
<td>≥ 4 (50)</td>
<td>> 350</td>
<td>m_{eff}^{4j} > 1100</td>
</tr>
<tr>
<td>SR-0\ell-4j-C*</td>
<td>≥ 4 (30)</td>
<td>> 400</td>
<td>m_{eff}^{4j} > 1000</td>
</tr>
</tbody>
</table>
3 b-jet searches

![Graph A](image1)

ATLAS

- Data 2012
- SM total
- Reducible bkg (MM)
- t\(\bar{t}\)b\(\bar{b}\)E (MC)
- t\(\bar{t}\)Z/h (MC)

SR-0l-4j-A

-

\[L^{\text{int}} = 20.1 \text{ fb}^{-1}, \quad \sqrt{s} = 8 \text{ TeV} \]

Graph B

- Data 2012
- SM total
- Reducible bkg (MM)
- t\(\bar{t}\)b\(\bar{b}\)E (MC)
- t\(\bar{t}\)Z/h (MC)

SR-0l-4j-B

-

\[L^{\text{int}} = 20.1 \text{ fb}^{-1}, \quad \sqrt{s} = 8 \text{ TeV} \]

Graph C

- Data 2012
- SM total
- Reducible bkg (MM)
- t\(\bar{t}\)b\(\bar{b}\)E (MC)
- t\(\bar{t}\)Z/h (MC)

SR-0l-4j-C

-

\[L^{\text{int}} = 20.1 \text{ fb}^{-1}, \quad \sqrt{s} = 8 \text{ TeV} \]