Search for MSSM and NMSSM Higgs bosons with the CMS detector

Christian Veelken
for the CMS Collaboration

ICHEP Conference, July 4th 2014
A SM-like Higgs boson has been discovered at the LHC
A SM-like Higgs boson has been discovered at the LHC

It looks like the SM Higgs boson, sounds like the SM Higgs boson and smells like the SM Higgs boson... but: **Is it really the SM Higgs boson?**

– or just one of multiple Higgs bosons in a supersymmetric world?
A SM-like Higgs boson has been discovered at the LHC

It looks like the SM Higgs boson, sounds like the SM Higgs boson and smells like the SM Higgs boson... but: **Is it really the SM Higgs boson?**
- or just one of multiple Higgs bosons in a supersymmetric world?

Two (complementary) ways to find-out:

- Precision measurements of BRs
 (good sensitivity already with 7+8 TeV LHC data ➔ see next BEH session)
- Find more Higgs bosons!

➔ Subject of this Presentation: Results of CMS searches for Higgs bosons in the context of MSSM and NMSSM
MSSM

2 Higgs doublets [*]

\[H_u = \left(\begin{array}{c} H_u^+ \\ H_u^0 \end{array} \right), \quad H_d = \left(\begin{array}{c} H_d^0 \\ H_d^- \end{array} \right) \]

2 scalars: \(h, H \)
1 pseudo-scalar: \(A \)
2 charged Higgs bosons: \(H^+, H^- \)

Higgs mass \(> m_Z \) due to radiative corrections: large stop mass and/or large stop mixing required to reach \(m_h = 125 \text{ GeV} \)

NMSSM

2 Higgs doublets [*]
+ complex Higgs singlet

\[H_u = \left(\begin{array}{c} H_u^+ \\ H_u^0 \end{array} \right), \quad H_d = \left(\begin{array}{c} H_d^0 \\ H_d^- \end{array} \right), \quad S \]

3 scalars: \(h_1, h_2, h_3 \)
2 pseudo-scalars: \(a_1, a_2 \)
2 charged Higgs bosons: \(H^+, H^- \)

\(m_h = 125 \text{ GeV} \) for Higgs with SM-like couplings can be achieve by mixing between doublet and singlet fields; much less constraints on radiative corrections

Simplicity

Naturalness

NB.: \(m_h = 125 \text{ GeV} \) is right where SUSY predicted the Higgs boson to be!
Search for light NMSSM Higgs bosons
Model independent search for events containing 2 muon pairs of same mass

Event selection

Exactly 2 muon pairs of:

- zero charge
- mass $m_{\mu\mu} < 5$ GeV
- same mass (within 5 times detector resolution)
Background Estimation

Main backgrounds:

- $b\bar{b}$ decays to muons
- Direct di-J/Ψ production

estimated from sideband in data

8 Events observed in $m_{\mu\mu_1} \neq m_{\mu\mu_2}$ sideband

→ Background estimate in signal region = 3.8 ± 2.1
Results

1 event observed in signal region, compatible with background prediction of 3.8 ± 2.1

No evidence for a signal

\Rightarrow Set limit on cross-section x BR
Model independent Limit

Effect of the 1 event observed in signal region
Searches for charged MSSM Higgs bosons
$H^+ \rightarrow c\bar{s}$ \((m_{H^+} < m_{top})\)

Event selection

\[\geq 2 \text{ b-tagged jets of } P_T > 30 \text{ GeV} \& |\eta| < 2.4 \]
H^{+} \rightarrow c \bar{s} \ (m_{H^{+}} < m_{\text{top}})

Event selection

≥ 2 b-tagged jets of $P_{T} > 30 \text{ GeV} \& |\eta| < 2.4$

≥ 2 further jets of $P_{T} > 30 \text{ GeV} \& |\eta| < 2.4$
$H^+ \rightarrow c\bar{s} \ (m_{H^+} < m_{top})$

Event selection

- ≥ 2 b-tagged jets of $P_T > 30$ GeV & $|\eta| < 2.4$
- ≥ 2 further jets of $P_T > 30$ GeV & $|\eta| < 2.4$
- $E_T^{miss} > 20$ GeV
- 1 isolated muon of $P_T > 25$ GeV & $|\eta| < 2.1$
Separation of H^+ Signal from Backgrounds

Main background: SM $t\bar{t}$
Minor background: single top

Difference between signal and background: $t \rightarrow H^+b$ instead of $t \rightarrow Wb$ decay

\Rightarrow Distinguish signal from background by looking at mass of jets without b-tag
Dijet Mass Reconstruction

Analysis strategy: Shape analysis of dijet mass distribution

Dijet mass reconstructed by **constrained kinematic fit**, using measured momenta + constraints

- muon
- b-tagged and non-b-tagged jets
- E_T^{miss}

plus their respective resolutions

Choose fit solution with lowest χ^2:

- For deciding which of the 2 b-tagged jets to pair with the non-b-tagged jets
- In case there are > 4 jets in the event

Shape analysis of dijet mass distribution

CMS Simulation, $\sqrt{s} = 8$ TeV

- $m(b + q\bar{q}') = m_t$
- $m(b + \mu\nu) = m_t$
- $m(\mu + v) = m_W$
Signal Extraction

In the case of a $t \rightarrow H^+b$ signal:

- a deficit of events at m_W [*]
- an excess of events at m_{H^+} is expected in the dijet mass distribution.

[*] due to reduction of the number of $t \rightarrow Wb \rightarrow qa'b$ decays (total number of $t\bar{t}$ events does not change)

The yields of the $t \rightarrow H^+b$ signal and of the backgrounds (SM $t\bar{t}$ and other) is determined via a fit of the dijet mass spectrum observed in data.

No evidence for a signal

\Rightarrow Set limits on $\text{BR}(t \rightarrow H^+b)$
Limit on $t \rightarrow H^+ b$ computed assuming all charged Higgs bosons to decay into dijets.
Searches for neutral MSSM Higgs bosons
Events are analyzed in 2 Categories, targeting different MSSM neutral Higgs production mechanisms:

1. **No-B-tag:** Events without b-tagged jets

 \[pp \rightarrow \phi \]
 gluon-gluon Fusion
 dominates cross-section in case \(\tan \beta \) is **small**

2. **B-tag:** Events containing \(\geq 1 \) b-tagged jet of \(P_T > 20 \) GeV & \(|\eta| < 2.4 \)

 \[pp \rightarrow \phi b \]
 b-associated Production
 dominates cross-section in case \(\tan \beta \) is **large**
Events are analyzed in 2 Categories, targeting different MSSM neutral Higgs production mechanisms:

1. **No-B-tag:** Events without b-tagged jets

 \[pp \rightarrow \phi \text{ gluon-gluon Fusion} \]

 dominates cross-section in case \(\tan \beta \) is small

2. **B-tag:** Events containing \(\geq 1 \) b-tagged jet of \(P_T > 20 \) GeV \& \(|\eta| < 2.4 \)

 \[pp \rightarrow \phi b \text{ b-associated Production} \]

 dominates cross-section in case \(\tan \beta \) is large

Presence of b-jet helps to reduce background (one b-jet usually outside acceptance)
Decay Channels

Signal events selected in 5 out of 6 channels:

- $\tau_{h}\tau_{h}$: 42.0%
- $e\tau_{h}$: 23.1%
- $\mu\tau_{h}$: 22.6%
- $e\mu$: 6.2%
- $\mu\mu$: 3.0%

96.9% of possible signal included in analysis
(not yet included in analysis: ee, BR = 3.1%)
Higgs Mass Reconstruction

Analysis strategy: Search for peak in ditau mass distribution

Reconstruction of ditau mass based on **Likelihood method**, using as input:

- Measured e, μ, τ_h-jet momenta
- Reconstructed E_T^{miss} and event-by-event estimate of E_T^{miss} resolution (E_T^{miss} reconstructed by a multivariate regression technique)

Resolution on $m_{\tau\tau}$ is $O(20\%)$, improves separation of signal from backgrounds

![Histogram of $m_{\tau\tau}$](image)

J.Phys.Conf.Ser. 513 (2014) 022035
No evidence for a signal beyond 125 GeV

Set upper limits on cross-section x BR for the 2 production processes $pp \rightarrow \phi$ and $pp \rightarrow \phi b$

Compute region in m_A-$\tan\beta$ parameter space excluded by non-observation of a signal
m_{\tau\tau} Distributions for all Channels

![Graphs showing m_{\tau\tau} distributions for different channels with and without B-tagging.](image-url)
Model independent Limits on ϕ

$m_{\tau\tau}$ spectra observed in B-tag and No-B-tag category are fitted simultaneously, with shape templates for $\phi \to \tau\tau$ signal and for background processes.

$pp \to \phi b$ ($pp \to \phi$) cross-section treated as nuisance parameter when computing limit on $pp \to \phi$ ($pp \to \phi b$)

red line: limit expected in case no SM Higgs production is present in the data
blue line: limit expected in the presence of $H \to \tau\tau$ with SM cross-section x BR
Exclusion contour in m_A-$\tan\beta$ plane

Interpretation of results on new MSSM benchmark scenarios in preparation

- **red** line: limit expected in case no SM Higgs production is present in the data
- **grey** line: limit expected in the presence of Higgs $\rightarrow \tau\tau$ with SM cross-section \times BR

Fit for sum of $A+H+h$,
taking dependency of cross-section,
BR and mass of each Higgs on
m_A and $\tan\beta$ into account

Excluded

red line:
limit expected in case no SM Higgs production is present in the data

grey line: limit expected in the presence of Higgs $\rightarrow \tau\tau$ with SM cross-section \times BR

Christian Veelken

Search for MSSM and NMSSM Higgs bosons
Summary & Outlook
Summary

CMS has searched for:

• Light NMSSM Higgs bosons
• Charged MSSM Higgs bosons
• Neutral MSSM Higgs bosons

No evidence for a supersymmetric Higgs signal observed in CMS data so far

→ Stringent limits on cross-section x BR have been set
Outlook

CMS is about to restart taking data in 2015, with:

• Higher center-of-mass energy $\sqrt{s} = 13$ TeV
• Higher luminosity
• New, more powerful, experimental techniques

⇒ Greatly enhanced sensitivity, in particular for signals of high mass

⇒ Stay tuned!
CMS Searches for SUSY Higgs bosons

Presented at ICHEP 2014
Presented at Conferences previously

CMS PAS HIG-12-052
$H^+ \rightarrow \tau\nu$

CMS PAS HIG-13-035
$H^+ \rightarrow c\bar{s}$

CMS PAS HIG-13-010
$a_1 \rightarrow 2\mu$

100pb

CMS PAS HIG-13-021
$\phi \rightarrow \tau\tau$

CMS PAS HIG-13-024
$\phi \rightarrow \mu\mu$

CMS PAS HIG-13-010
$h \rightarrow 2a_1 \rightarrow 4\mu$

10 pb

$m_H [\text{GeV}]$
The CMS Detector

Silicon tracking detector

ECAL

HCAL

Muon system

Christian Veelken

Search for MSSM and NMSSM Higgs bosons
Signal cross-section dropping rather steeply with Higgs mass

Parton luminosity increases by $O(10)$ in run 2 compared to run 1

http://www.hep.ph.ic.ac.uk/~wstirlin/plots/plots.html

ratios of LHC parton luminosities: 14 TeV / 8 TeV and 33 TeV / 8 TeV
Width of MSSM neutral Higgs boson
\[\leq 3\% \text{ of Higgs mass} \]

Higgs width relevant for \(\phi \rightarrow \mu \mu \) analysis only
(experimental resolution on reconstructed Higgs mass
\(O(15\%) \) in \(\phi \rightarrow bb \) and \(O(20\%) \) in \(\phi \rightarrow \tau \tau \) decays)
m_h^max scenario disfavored by observation of SM-like Higgs boson of mass 125 ± 3 GeV

New MSSM benchmark scenarios compatible with 125 GeV in most of parameter space
$pp \rightarrow a_1 \rightarrow 2\mu$

Search for peak in dimuon mass distribution

No evidence for signal

\Rightarrow Set limits

Christian Veelken
Search for MSSM and NMSSM Higgs bosons

37
Fraction R of energy carried by highest P_T ("leading") track of hadronic tau is sensitive to τ-lepton polarization, which is opposite for taus originating from $t \rightarrow Wb \rightarrow \tau b$ and taus produced in $H^+ \rightarrow \tau v$ decays.

Data in agreement with background expectation

Set limits
$\phi b \rightarrow 3b$

Search for peak in dijet mass distribution

Sizeable signal, but also large backgrounds

No evidence for signal

\Rightarrow Set limits

Christian Veelken

Search for MSSM and NMSSM Higgs bosons
Search for peak in dimuon mass distribution

No evidence for signal peak in dimuon mass spectrum observed in data

$\phi \rightarrow \mu\mu$

Dimuon mass Resolution $\sim 3\%$

Set Limit

CMS PAS HIG-12-011

Search for MSSM and NMSSM Higgs bosons
Backgrounds to $\phi \rightarrow \tau \tau$

$Z/\gamma^* \rightarrow \tau \tau$
Obtained using Embedding technique:
$Z \rightarrow \mu \mu$ events selected in data, reconstructed muons replaced by simulated taus

Electroweak ($W+$jets, diboson, $Z \rightarrow ee/\mu\mu$)
Shapes from MC simulation
 Normalization of $W+$jets obtained by extrapolation from high m_τ control region in data, others from MC simulation

QCD
Fully data driven: Normalization (shape) obtained from same-sign events with isolated (non-isolated) muons

$t\bar{t}$, single top
Shape from MC simulation, normalization from data

Christian Veelken
Search for MSSM and NMSSM Higgs bosons
Hadronic tau Reconstruction

Mass $m_\tau = 1.78$ GeV

Lifetime $c \cdot \tau = 87 \, \mu$m

→ Taus typically decay before reaching first detector layer

Charged and neutral pions reconstructed by Particle Flow algorithm

<table>
<thead>
<tr>
<th>Decay channel</th>
<th>BR (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\tau^- \rightarrow \mu^- \bar{\nu}\mu \nu\tau$</td>
<td>17.36</td>
</tr>
<tr>
<td>$\tau^- \rightarrow e^- \bar{\nu}e \nu\tau$</td>
<td>17.85</td>
</tr>
<tr>
<td>$\tau^- \rightarrow h^- \nu_\tau$</td>
<td>11.6</td>
</tr>
<tr>
<td>$\tau^- \rightarrow h^- \pi^0 \nu_\tau$</td>
<td>26.0</td>
</tr>
<tr>
<td>$\tau^- \rightarrow h^- \pi^0 \pi^0 \nu_\tau$</td>
<td>9.5</td>
</tr>
<tr>
<td>$\tau^- \rightarrow h^- h^+ h^- \pi^0 \nu_\tau$</td>
<td>9.8</td>
</tr>
<tr>
<td>$\tau^- \rightarrow h^- h^+ h^- \pi^0 \nu_\tau$</td>
<td>4.8</td>
</tr>
<tr>
<td>others</td>
<td>3.1</td>
</tr>
</tbody>
</table>
Tau Decay Mode reconstruction

![Diagram showing decay modes](image)

<table>
<thead>
<tr>
<th>Decay Mode</th>
<th>Resonance</th>
<th>BR (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\tau^- \rightarrow e^- \bar{\nu}e \nu\tau$</td>
<td>$\pi(140)$</td>
<td>11.6</td>
</tr>
<tr>
<td>$\tau^- \rightarrow \mu^- \bar{\nu}\mu \nu\tau$</td>
<td>$\rho(770)$</td>
<td>26.0</td>
</tr>
<tr>
<td>$\tau^- \rightarrow \pi^- \pi^0 \nu_\tau$</td>
<td>$a_1(1260)$</td>
<td>10.8</td>
</tr>
<tr>
<td>$\tau^- \rightarrow \pi^- \pi^+ \pi^- \nu_\tau$</td>
<td>$a_1(1260)$</td>
<td>9.8</td>
</tr>
<tr>
<td>Other hadronic modes</td>
<td></td>
<td>4.8</td>
</tr>
<tr>
<td>All hadronic modes</td>
<td></td>
<td>64.8</td>
</tr>
</tbody>
</table>

Approach works well up to high pile-up
CMS Tau ID performed well during run 1
Data well modeled by Monte Carlo simulation

See also poster by Rosamaria Venditti