Precise Measurement of the Higgs Boson Mass With the CMS Detector

Matteo Sani, UCSD
on behalf of the CMS Collaboration
Introduction

Since CMS announced its discovery in 2012, the focus has been measuring the properties of the Higgs boson:

- m_H is a fundamental parameter whose value is not predicted by the Standard Model (SM);
- SM predictions fully determined once the mass of the boson has been measured;
- Knowing the value of m_H allows to over-constrain electroweak fit (test its self consistency).

Here presented the Higgs boson mass measurement performed with the CMS detector:

- Consider $H \rightarrow ZZ$ and $H \rightarrow \gamma \gamma$ as the decay channels with the best mass resolution (few %);
 - $H \rightarrow \gamma \gamma$ results recently updated;
- Keep excellent mass-resolution in high pileup environment.

The measurement uses the full Run I dataset recorded by CMS of LHC pp collisions:

- $\mathcal{L}_{\text{int}} = 5.1 \text{ fb}^{-1}$ at 7 TeV and $\mathcal{L}_{\text{int}} = 19.7 \text{ fb}^{-1}$ at 8 TeV.
Photon and Electron Energy

To obtain the best energy resolution, photon and electron energies are corrected for several detector effects with regression techniques based on similar sets of input variables:

- Collection of shower-shape variables, cluster η and ϕ-widths, hadronic over EM energy ratio, number of primary vertices…;

- **Photons**: exploited photon-electron similarities (electron EM cluster treated as a photon):
 - Per photon energy resolution prediction ($\frac{E_{\text{true}}}{E_{\text{RECO}}}$);

- **Electrons**: track momentum and corrected cluster energy are combined with a multivariate regression function:
 - Corrected ECAL energy and track momentum estimate with their uncertainties, E over p ratio and electron category based on the amount of emitted bremsstrahlung.

![Graph showing m_{peak} data vs m_{MC} over p_T (GeV)]
Final calibration is obtained with two additional steps as follows:

- Energy scale in data is corrected to agree with MC:
 - ET dependent corrections.

- Then MC energy resolution is corrected with a gaussian smearing term to make it match data Z line-shape.

MC Higgs invariant mass distribution (H → γγ)

- $\sigma_{HM} = 0.79$ GeV
- $\sigma_{HM} = 2.14$ GeV
Muon momentum

- **Muon p_T resolution** varies between ~1.5% in barrel up to 6.0% in endcaps (p_T range 5 to 70 GeV):
 - Multiple scattering in Tracker dominant effect (detector alignment contribute to lesser extent).

- **Bias in reconstructed muon p_T** is determined from **Z peak position** as a function of kinematical variables and validated using Z and low-mass resonances (corrections applied in data accordingly, data/MC agreement 0.1%).

- **Resolution in MC** is corrected from a fit to the Z (and low-mass resonances) mass spectrum (relative data/MC difference 0.5%).
Event parameters:

\[m_{\gamma\gamma} = 125.9 \text{ GeV} \]
\[p_{T1} = 89.8 \text{ GeV} \]
\[p_{T2} = 46.5 \text{ GeV} \]
\[\eta_{\gamma1} = 0.06 \]
\[\eta_{\gamma2} = -0.81 \]

\[\frac{\sigma_m}{m} = 0.89\% \]

See also Matthew Kenzie talk.
Systematic Uncertainties H→γγ (1)

- Per-photon level uncertainties are propagated to the di-photon invariant mass shape.

- **Non linearity in extrapolation of energy scale** (determined with Z electron showers, applied to photons from Higgs decay):
 - Mitigated with E_T dependent scale corrections;
 - Checked Z events in scalar E_T sum and with E/p ratio from W;
 - Linearity assumption checked using parabola;
 - Non linearity up to 0.1%.

See also Federico Ferri talk.
Estimated a deficit of Tracker material in the simulation (up to 10 to 20%):

- Uncertainty (from 0.03 to 0.3%) estimated using modified geometries;
- Checked using double difference of e/γ scales.
Imperfect EM shower simulation:

- Using a simulation with improved shower description changes e and γ energy scale;
- Smaller variation in the relative energy scale of electrons and photons with modified G4 is taken as uncertainty on knowledge of correct simulation shower (0.05%);
- Improved simulation considered for next MC production.

Non uniformity of light collection (including radiation-induced transparency losses):

- Unconverted photons on average travel into ECAL crystals one radiation length deeper than electrons;
- Uncertainty estimated as e/γ energy scale differences using the nominal MC and a more accurate simulation of the non-uniformity (uncertainty on photon energy scale at most of 0.015%).
Recently updated analysis on Run I dataset:

- Mass measurement uses same analysis as in coupling measurement;
- To get mass estimate less model dependent signal strengths of Higgs production mechanisms are allowed to vary independently.

$$m_H = 124.70 \pm 0.31 \text{ (stat)} \pm 0.15 \text{ (syst)} \text{ GeV}$$

<table>
<thead>
<tr>
<th>Category</th>
<th>Description</th>
<th>Uncertainty (GeV)</th>
</tr>
</thead>
</table>
| Energy scale calibration and resolution | - Uncertainty on the correction applied
- Use E_T dependent corrections
- Also model stochastic and constant terms in resolution | ± 0.05 |
| Non-linearity in scale extrapolation from m_Z to m_H | - Imperfect modeling in MC of differences between showers from $Z\rightarrow ee$ at m_Z scale and $H\rightarrow \gamma\gamma$ at m_H scale
- E_T dependent scale corrections mitigates it | ± 0.10 |
| Electron-photon differences not modeled in MC | - Tracker material mis-modeling
- Variation in scintillation light peak between e and γ
- Imperfect EM shower simulation in G4
- Imperfections in out-of-time PU description | ± 0.10 |
| Other | | ± 0.04 |
H→ZZ→4l

(PhysRevD.89.092007)

See also Adish Vartak talk.
Exploits kinematic variables of the decay products to discriminate between signal and background:

- Mass measured with multi-dimensional (KD, \(m_{4l} \) and per-event mass resolution) unbinned maximum-likelihood fit to the selected events.

\[
m_H = 125.6 \pm 0.4 \text{ (stat)} \pm 0.2 \text{ (syst)} \text{ GeV}
\]

<table>
<thead>
<tr>
<th>Source of Uncertainty</th>
<th>Uncertainty in (m_H) (GeV)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Electron e-scale</td>
<td>0.3 % (4e), 0.1 % (2e2(\mu))</td>
</tr>
<tr>
<td>Muon p-scale</td>
<td>0.1 %</td>
</tr>
</tbody>
</table>
• Signal strength modifiers for (ggH, ttH)→γγ, (VBF, VH)→γγ and H→ZZ are not fixed to the SM expectation to get an estimate of m_H as much as possible model independent:

\[m_H = 125.03^{+0.26}_{-0.27} \text{ (stat)}^{+0.13}_{-0.15} \text{ (syst)} = 125.03^{+0.29}_{-0.31} \text{ (tot) GeV} \]

- The measurements of the single channels have been checked to agree at the 1.6σ level.
Conclusions

- Properties of the Higgs boson are measured in pp collisions with the CMS detector at the LHC.
 - The data sample collected during Run I corresponds to an integrated luminosity of about 25 fb$^{-1}$.

- From the two highest resolution decay channels ($\gamma\gamma$ and ZZ) the mass of the Higgs boson has been measured to be:

\[m_H = 125.03^{+0.26}_{-0.27} \text{ (stat)}^{+0.13}_{-0.15} \text{ (syst)} \text{ GeV} \]

the precision of the measurement being dominated by the statistical uncertainty.
Back up
Systematic Uncertainty (HZZ)

- Z, Y and J/ψ events used to set and validate the absolute momentum scale and resolution.

- Electrons: data/MC deviations are used as systematic uncertainty (0.1 to 0.3% mass scale uncertainty in 2e2µ and 4e).

- Muons: systematic uncertainty in momentum scale translates into 0.1% on 4µ mass scale.
Per-event Mass Uncertainty (HZZ)

- Momentum uncertainty for each lepton is propagated into a relative mass uncertainty \((\sigma_{m4l}/m_{4l}) \) (including FSR photons).

- Line-shapes of \(J/\psi \) and \(Z \) resonances modeled as Breit Wigner \(\otimes \) double-sided Crystal Ball where resolution is estimated as \(\lambda \cdot \sigma_{m4l} \):
 - \(\lambda = 1.2 \) (1.1) for electrons (muons).

- Closure test performed with \(Z \) to leptons:
 - 20\% systematic uncertainty on per-event mass resolution.
ECAL Calibration (1)

Electron/photon energy measured from the energy deposited over several crystals:

\[E_{e,\gamma} = F_{e,\gamma} \times G \cdot \sum_{xtal} \left[IC_{xtal} \cdot S(t)_{xtal} \cdot A_{xtal} \right] \]

- \(A_{xtal} \): signal amplitude (ADC counts)
- \(S(t)_{xtal} \): time-dependent corrections for radiation-induced response variations (1 measurement/channel/40 min);
- \(IC_{xtal} \): inter-calibration factor, to equalize the response of all ECAL channels;
- \(G \): ECAL energy scale [GeV/ADC];
- \(F_{e,\gamma} \): particle dependent corrections applied at the clustering level.
ECAL Calibration (2)

- During LHC cycles the single channel response varies depending on the irradiation conditions.
- A light monitoring system is used to track and correct for response changes:
 - Measures the response variation to the laser light.
Pre-calibration performed in 2000-2009 test beams, cosmic rays, radiation source and “beam splashes” during the first LHC runs.

In situ calibration performed combining different techniques:

- Inter-calibration of crystals located within the same η ring:
 - Φ-symmetry of the energy flow through the ECAL crystals;
 - π^0/η invariant mass peak;
 - Electron $E_{(ECAL)}/p(Tk)$.

- Inter-calibration of the η rings (η scale):
 - Electron E/p;
 - Z invariant mass peak.

- Energy scale and resolution:
 - Z invariant mass peak.
Scale Corrections ($H\gamma\gamma$)

- Split data and MC into 59 run ranges, 4xη bins and 2xR9 bins.

- Fit Z line shape and find scale corrections for data in runx $|\eta|$ bins.

- Simultaneously fit scale with a Gaussian smearing term for MC $|\eta|$xR9:
 - In barrel (8 TeV) the smearing term has an energy dependence by parametrization through $b/\sqrt{ET} + c$;

- Further residual scale correction in ETx $|\eta|$xR9
Systematic Uncertainty (Scale Corrections $H \rightarrow \gamma\gamma$)

- Uncertainties coming from corrections to the photon energy scale from $Z \rightarrow ee$:
 - Due to:
 - R9 reweight to H photon distribution;
 - Changing electron selection;
 - Invariant mass fit boundary choice.
 - Uncertainty on the correction applied as systematic;
 - Propagated from per-photon level to the di-photon invariant mass shape;
 - Correlates energy scale across analysis categories.
Electron-Photon Differences

- Residual uncertainties due to different detector response to e and γ.

- Uncertainty derived from data/MC differences:
 - Not interested in absolute difference of electron and gamma response;
 - Checked double ratio between the electron and photon energy scales with nominal MC and modified scenarii.

- Imperfect description of material in the Tracker in MC;

- Variation in scintillation light peak between electron and gamma;

- Imperfect EM shower simulation in Geant4;

- Remaining imperfections in out-of-time PU (negligible).
Tracker Material

- Deficit in Tracker material in MC simulation up to 10 to 20%.
- Systematic uncertainty determined by studying different detector geometries:
 - Checked with double difference.

\[
\frac{\langle E_{\text{rec}}/E_{\text{gen}} \rangle_{\text{new, } \gamma} - \langle E_{\text{rec}}/E_{\text{gen}} \rangle_{\text{new, } e}}{\langle E_{\text{rec}}/E_{\text{gen}} \rangle_{\text{std, } \gamma} - \langle E_{\text{rec}}/E_{\text{gen}} \rangle_{\text{std, } e}}
\]
Linearity

- Uncertainty due to extrapolation of energy scales with electrons from Z decay to photon typical of H.

- Checked Z peak position in bins of scalar sum Et and also E/p.
 - Linearity assumption checked using parabola.
Light Collection

- Unconverted photons on average travel into ECAL crystals one radiation length deeper than electrons:
 - Simulation partially includes this non-uniformity (just for rear of the crystal);
 - Non-uniformity in the front part have been measured in test-beam:
 - Effect on the energy scale found to be at most 0.015%;
 - Additional effects due to radiation damage also been studied (found to be smaller).
Mass Uncertainties Summary (H\(\gamma\gamma\))

- Photon energy scale corrections:
 - \(2\times\eta, \ 2\times R9\) (for 7 and 8 TeV);
 - Partially correlated across years;
 - Contributes 0.05 GeV to total mass error.

- Z line shape:
 - \(1\times Z\) mass uncertainty (0.01%);
 - Effect of 10 MeV uncertainty on Z mass;
 - Contributes 0.01 GeV to total mass error.

- Residual non-linearity in scale:
 - \(1\times 7\) and 8 TeV;
 - Partial correlation across years
 - Contributes 0.10 GeV to total mass error.

- E/g differences in MC:
 - \(1\times\)Material (0.07 GeV);
 - \(1\times\)Light Collection (0.02 GeV);
 - \(1\times\)GEANT4 (0.06 GeV);
 - Fully correlated across years;
 - Contributes 0.10 GeV to total mass error.

- Other contribution studied with negligible effects:
 - Residual out-of-time PU mis-modeling.