Muon Accelerators for High Energy Physics Applications: νSTORM, NuMAX & Beyond...

Mark Palmer
Director, US Muon Accelerator Program

ICHEP, Valencia, July 2-9, 2014
Muon Accelerators for HEP

• \(\mu \) – an elementary charged lepton:
 – 200 times heavier than the electron
 – 2.2 \(\mu s \) lifetime at rest

• Physics potential for the HEP community using muon beams
 – Tests of Lepton Flavor Violation
 – Anomalous magnetic moment \(\Rightarrow \) hints of new physics (g-2)
 – Can provide equal fractions of electron and muon neutrinos at high intensity for studies of neutrino oscillations – the Neutrino Factory concept
 – Offers a large coupling to the “Higgs mechanism”
 \[\frac{m_{\mu}^2}{m_{e}^2} \approx 4 \times 10^4 \]
 – As with an \(e^+e^- \) collider, a \(\mu^+\mu^- \) collider would offer a precision leptonic probe of fundamental interactions

\[\mu^+ \rightarrow e^+ \nu_e \bar{\nu}_\mu \]
\[\mu^- \rightarrow e^- \bar{\nu}_e \nu_\mu \]
Outline

• Why Neutrino Factories?

• Neutrino Factory Concepts
 – Short baseline ⇨ STORM
 – Long Baseline
 • The IDS-NF Reference Design
 • Options for a staged implementation:
 – The MAP Muon Accelerator Staging Study
 – The staged NuMAX Concept
 – Accelerator R&D Needs

• Going Beyond a Neutrino Factory Facility
 – Possibilities for a future Muon Collider Capability

• Conclusion
WHY NEUTRINO FACTORIES?
The Key Issues

- What things must we understand in the neutrino sector?
 - δ_{CP}
 - The mass hierarchy
 - The value of $\theta_{23} - \pi/4$: +, - or zero?
 - Resolve the LSND and other short baseline experimental anomalies
 - And enable the search for new physics
Can we probe the CP violation in the neutrino sector at the same level as in the CKM Matrix?

0.025 IDS-NF: 700kW target, no cooling, 2×10^8 s running time, 10-15 kTon detector

P. Coloma, P. Huber, J. Kopp, W. Winter – arxiv:1209.5973
Microscopes for the ν Sector

• Superbeam technology will continue to drive initial observations in the coming years

• However, anomalies and new discoveries will drive our need for precision studies to develop a complete physical understanding

• Neutrino Factory capabilities (both long- and short-baseline) offer a route to controlled systematics and precision measurements to fully elucidate the relevant physics principles

⇒ Precision Microscopes for the ν sector
NEUTRINO FACTORY CONCEPTS
Neutrino Factory Overview

• Short Baseline NF
 – nuSTORM
 • Definitive measurement of sterile neutrinos
 • Precision ν_e cross-section measurements (systematics issue for long baseline SuperBeam experiments)
 • Would serve as an HEP muon accelerator proving ground…

• Long Baseline NF with a Magnetized Detector
 – IDS-NF (International Design Study for a Neutrino Factory)
 • 10 GeV muon storage ring optimized for 1500-2500km baselines
 • “Generic” design (ie, not site-specific)
 – NuMAX (Neutrinos from a Muon Accelerator CompleX)
 • Site-specific: FNAL \Rightarrow SURF (1300km baseline)
 • 4-6 GeV beam energy optimized for CP studies
 – Flexibility to allow for other operating energies
 • Can provide an ongoing short baseline measurement option
 • Detector options
 – Magnetized LAr is the goal
 – Magnetized iron provides equivalent CP sensitivities using ~3x the mass
νSTORM

μ decay ring: $P = 3.8 \text{ GeV/c} \pm 10\%$

See talk by J-B. Lagrange
Neutrino Physics Session:
Friday 16:00

No new technologies required!
Could be deployed now!
Example of Potential νSTORM Leverage for Long Baseline Experiments: T2HK

NuMAX+ targets equivalent sensitivity to CP violation in the ν sector as has been achieved in the flavor sector.

nuSTORM + T2HK offers significantly improved sensitivity vs T2HK alone.
νStorm as an R&D platform

- A high-intensity pulsed muon source
- $100 < p_\mu < 300$ MeV/c muons
 - Using extracted beam from ring
 - 10^{10} muons per 1 μsec pulse

- Beam available simultaneously with physics operation

- νSTORM also provides the opportunity to design, build and test decay ring instrumentation (BCT, momentum spectrometer, polarimeter) to measure and characterize the circulating muon beam
The Long Baseline Neutrino Factory

- IDS-NF: the ideal NF
 - Supported by MAP
- MASS working group: A staged approach - *NuMAX@5 GeV⇒SURF*

<table>
<thead>
<tr>
<th>Accelerator facility</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Muon total energy</td>
<td>10 GeV</td>
</tr>
<tr>
<td>Production straight muon decays in 10^7 s</td>
<td>10^{21}</td>
</tr>
<tr>
<td>Maximum RMS angular divergence of muons in production straight</td>
<td>0.1/γ</td>
</tr>
<tr>
<td>Distance to long-baseline neutrino detector</td>
<td>1500–2500 km</td>
</tr>
</tbody>
</table>

Magnetized Iron Neutrino Detector (MIND):

- IDS-NF baseline:
 - Intermediate baseline detector:
 - 100 kton at 2500–5000 km
 - Magic baseline detector:
 - 50 kton at 7000–8000 km
 - Appearance of “wrong-sign” muons
 - Toroidal magnetic field > 1 T
 - Excited with “superconducting transmission line”

- Segmentation: 3 cm Fe + 2 cm scintillator
- 50-100 m long
- Octagonal shape
- Welded double-sheet
 - Width 2m; 3mm slots between plates

Bross, Soler
The MAP Muon Accelerator Staging Study ⇒ NuMAX

- **PIP-II**: 0.8 GeV
- **PIP-III**: 2.2 GeV
- **μ pre-Linac**: 1.0 GeV 325 MHz
- **Dual-Use (p & μ) Linac**: 3.75 GeV 650 MHz
- **μ⁺ & μ⁻ Chicane**
- **NuMAX**: 650 MHz
- **NuMAX Staging**:
 - **Commissioning**
 - 1MW Target
 - No Cooling
 - 10kT Detector
 - **NuMAX+**
 - 2.75 MW Target
 - 6D Cooling
 - 34kT Detector

Front End

<table>
<thead>
<tr>
<th>PIP-II</th>
<th>0.8 GeV</th>
</tr>
</thead>
<tbody>
<tr>
<td>PIP-III</td>
<td>2.2 GeV</td>
</tr>
<tr>
<td>μ pre-Linac</td>
<td>1.0 GeV 325 MHz</td>
</tr>
<tr>
<td>Dual-Use (p & μ) Linac</td>
<td>3.75 GeV 650 MHz</td>
</tr>
<tr>
<td>μ⁺ & μ⁻ Chicane</td>
<td>NuMAX 650 MHz</td>
</tr>
<tr>
<td>NuMAX Staging:</td>
<td></td>
</tr>
<tr>
<td>1MW Target</td>
<td></td>
</tr>
<tr>
<td>No Cooling</td>
<td></td>
</tr>
<tr>
<td>10kT Detector</td>
<td></td>
</tr>
<tr>
<td>NuMAX+</td>
<td></td>
</tr>
<tr>
<td>2.75 MW Target</td>
<td></td>
</tr>
<tr>
<td>6D Cooling</td>
<td></td>
</tr>
<tr>
<td>34kT Detector</td>
<td></td>
</tr>
</tbody>
</table>
NF Staging (MASS)

<table>
<thead>
<tr>
<th>System</th>
<th>Parameters</th>
<th>Unit</th>
<th>nuSTORM</th>
<th>NuMAX Commissioning</th>
<th>NuMAX</th>
<th>NuMAX+</th>
</tr>
</thead>
<tbody>
<tr>
<td>Performance</td>
<td>Nu or νμ to detectors/year</td>
<td>-</td>
<td>3×10^{17}</td>
<td>4.9×10^{19}</td>
<td>1.8×10^{20}</td>
<td>5.0×10^{20}</td>
</tr>
<tr>
<td></td>
<td>Stored μ+ or μ-/year</td>
<td>-</td>
<td>8×10^{17}</td>
<td>1.25×10^{20}</td>
<td>4.65×10^{20}</td>
<td>1.3×10^{21}</td>
</tr>
<tr>
<td>Detector</td>
<td>Far Detector: Type</td>
<td>SuperBIND</td>
<td>MIND / Mag LAr</td>
<td>MIND / Mag LAr</td>
<td>MIND / Mag LAr</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Distance from Ring</td>
<td>km</td>
<td>1.9</td>
<td>1300</td>
<td>1300</td>
<td>1300</td>
</tr>
<tr>
<td></td>
<td>Mass</td>
<td>kT</td>
<td>1.3</td>
<td>100 / 30</td>
<td>100 / 30</td>
<td>100 / 30</td>
</tr>
<tr>
<td></td>
<td>Magnetic Field</td>
<td>T</td>
<td>2</td>
<td>0.5-2</td>
<td>0.5-2</td>
<td>0.5-2</td>
</tr>
<tr>
<td></td>
<td>Near Detector: Type</td>
<td>SuperBIND</td>
<td>Suite</td>
<td>Suite</td>
<td>Suite</td>
<td>Suite</td>
</tr>
<tr>
<td></td>
<td>Distance from Ring</td>
<td>m</td>
<td>50</td>
<td>100</td>
<td>100</td>
<td>100</td>
</tr>
<tr>
<td></td>
<td>Mass</td>
<td>kT</td>
<td>0.1</td>
<td>1</td>
<td>1</td>
<td>2.7</td>
</tr>
<tr>
<td></td>
<td>Magnetic Field</td>
<td>T</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Neutrino Ring</td>
<td>Ring Momentum (P_{μ})</td>
<td>GeV/c</td>
<td>3.8</td>
<td>5</td>
<td>5</td>
<td>5</td>
</tr>
<tr>
<td></td>
<td>Circumference (C)</td>
<td>m</td>
<td>480</td>
<td>737</td>
<td>737</td>
<td>737</td>
</tr>
<tr>
<td></td>
<td>Straight section</td>
<td>m</td>
<td>184</td>
<td>281</td>
<td>281</td>
<td>281</td>
</tr>
<tr>
<td></td>
<td>Number of bunches</td>
<td>-</td>
<td>60</td>
<td>60</td>
<td>60</td>
<td>60</td>
</tr>
<tr>
<td></td>
<td>Charge per bunch</td>
<td>1×10^{9}</td>
<td>6.9</td>
<td>26</td>
<td>35</td>
<td></td>
</tr>
<tr>
<td>Acceleration</td>
<td>Initial Momentum</td>
<td>GeV/c</td>
<td>-</td>
<td>0.25</td>
<td>0.25</td>
<td>0.25</td>
</tr>
<tr>
<td></td>
<td>Single-pass Linacs</td>
<td>GeV/c</td>
<td>-</td>
<td>1.0, 3.75</td>
<td>1.0, 3.75</td>
<td>1.0, 3.75</td>
</tr>
<tr>
<td></td>
<td>Repetition Frequency</td>
<td>MHz</td>
<td>-</td>
<td>325, 650</td>
<td>325, 650</td>
<td>325, 650</td>
</tr>
<tr>
<td>Cooling</td>
<td></td>
<td></td>
<td></td>
<td>No</td>
<td>No</td>
<td>Initial</td>
</tr>
<tr>
<td>Proton Driver</td>
<td>Proton Beam Power</td>
<td>MW</td>
<td>0.2</td>
<td>1</td>
<td>1</td>
<td>2.75</td>
</tr>
<tr>
<td></td>
<td>Proton Beam Energy</td>
<td>GeV</td>
<td>120</td>
<td>6.75</td>
<td>6.75</td>
<td>6.75</td>
</tr>
<tr>
<td></td>
<td>Protons/year</td>
<td>1×10^{21}</td>
<td>0.1</td>
<td>9.2</td>
<td>9.2</td>
<td>25.4</td>
</tr>
<tr>
<td></td>
<td>Repetition Frequency</td>
<td>Hz</td>
<td>0.75</td>
<td>15</td>
<td>15</td>
<td>15</td>
</tr>
</tbody>
</table>
Possibilities for NF Capabilities at Fermilab:

νSTORM ➔ NuMAX

Possible to deploy subsequent muon collider capabilities

Remains fully compatible with the PIP-II ➔ III staging option

νSTORM

To Near Detector(s) for Short Baseline Studies

0.8 GeV Proton Linac (PIP-II)

0.8-3 GeV Proton Linac (PIP-III)

1 GeV Muon Linac (325MHz)

3-7 GeV Proton & 1-5 GeV Muon Dual Species Linac

νSTORM R&D Facility

LBNF Superbeam

To SURF

NuMAX: vs to SURF

Accumulator, Buncher, Combiner

Front End

Target

Initial Cool

Final Cool
Staged Performance of NuMAX

\[\Delta \delta \text{ at } 1\sigma \]

\[\theta_{23} = 40^\circ \]

Comparison of Potential Performance of the Various Advanced Concepts (courtesy P. Huber)

- LBNE10 (1.2MW, 10kt)
- LBNE (1.2MW, 34kt)
- T2HK (0.7MW, 560kt)
- LBNE + Project X (2.3MW, 34kt)
- Daedalus (2.5MW) + T2HK\(_y\)
- Daedalus (\(1.25 + 2.5\)MW) + T2HK\(_y\)
- NuMAX to SURF (1MW, 10kt)
- NuMAX to SURF (1MW, 34kt)
- NuMAX+ to SURF (3MW, 10kt)
- NuMAX+ to SURF (3MW, 34kt)
Accelerator R&D Effort (U.S. MAP)

Design Studies
- Proton Driver
- Front End
- Cooling
- Acceleration and Storage
- Collider
- Machine-Detector Interface
- Work closely with physics and detector efforts

Technology R&D
- RF in magnetic fields
- SCRF for acceleration chain (Nb on Cu technology)
- High field magnets
 - Utilizing HTS technologies
- Targets & Absorbers
- MuCool Test Area (MTA)

Major System Demonstration
- The Muon Ionization Cooling Experiment – MICE
 - Major U.S. effort to provide key hardware: RF Cavities and couplers, Spectrometer Solenoids, Coupling Coil(s), Partial Return Yoke
 - Experimental and Operations Support
MICE Experiment @RAL

2015 Data

MICE Step IV: Study of Absorber Materials

Commission in 2017 (expedited schedule)

MICE Step V: Demonstration of Muon Cooling w/RF re-acceleration

See following talk by Ken Long

US-UK
GOING BEYOND NEUTRINO FACTORY CAPABILITIES
Features of the Muon Collider

• Superb Energy Resolution
 – SM Thresholds and s-channel Higgs Factory operation

• Multi-TeV Capability (≤ 10TeV):
 – Compact & energy efficient machine
 – Luminosity > 10^{34} \text{ cm}^{-2} \text{ s}^{-1}
 – Option for 2 detectors in the ring

• For $\sqrt{s} > 1$ TeV: Fusion processes dominate
 ⇒ an Electroweak Boson Collider
 ⇒ a discovery machine complementary to a very high energy pp collider
 – At >5TeV: Higgs self-coupling resolutions of <10%

What are our accelerator options if new LHC data shows evidence for a multi-TeV particle spectrum?
Muon Colliders extending high energy frontier with potential of considerable power savings

Lepton Colliders
Wall Plug Power

Lepton Colliders Figure of Merit: Luminosity per wall plug power
NF/MC Synergies

Neutrino Factory (NuMAX)

- Proton Driver
- Front End
- Cooling
- Acceleration
- μ Storage Ring

μ Factory Goal: \(10^{21} \mu^+ \& \mu^-\) per year within the accelerator acceptance

μ-Collider Goals:
- 126 GeV \(\Rightarrow \sim 14,000 \) Higgs/yr
- Multi-TeV \(\Rightarrow \) Lumi > \(10^{34}\) cm\(^{-2}\)s\(^{-1}\)

Muon Collider

- Proton Driver
- Front End
- Cooling
- Acceleration
- Collider Ring

\(E_{\text{CoM}}\): Higgs Factory to \(\sim 10\) TeV

Share same complex

Accelerators:
- Single-Pass Linacs
- Linacs, RLA or FFAG, RCS
The plan consists of a series of facilities with increasing complexity, each with performance characteristics providing unique physics reach:

- **nuSTORM:** a short-baseline Neutrino Factory-like ring enabling a definitive search for sterile neutrinos, as well as neutrino cross-section measurements that may ultimately be required for precision measurements at any long-baseline experiment.
- **NuMAX:** an initial long-baseline Neutrino Factory, operating close to SURF, affording a precise and well-characterized neutrino beam with the capabilities of conventional superbeam technology.
- **NuMAX+:** a full-intensity Neutrino Factory, operating as the ultimate source to enable precision CP-violation measurements in the neutrino sector.
- **Higgs Factory:** a collider whose baseline and operations are capable of providing between 3500 (during startup operations) and 15,000 Higgs events per year (10^7 sec) with exquisite energy resolution.
- **Multi-TeV Collider:** if warranted by LHC results, a multi-TeV Muon Collider likely offers the best performance and least cost for any lepton collider operating in the multi-TeV regime.
A 6 TeV Muon Collider would have a similar circumference as the Tevatron Ring
Muon Collider Conceptual Layout

- Accelerate hydrogen ions to 8 GeV using SRF technology.
- Compressor Ring: Reduce size of beam.
- Target: Collisions lead to muons with energy of about 200 MeV.
- Muon Cooling: Reduce the transverse motion of the muons and create a tight beam.
- Initial Acceleration: In a dozen turns, accelerate muons to 20 GeV.
- Recirculating Linear Accelerator: In a number of turns, accelerate muons up to 2 TeV using SRF technology.
- Collider Ring: Located 1,000 meters underground.
- Muons live long enough to make about 1,000 turns.

Concept for a Muon Accelerator Complex at Fermilab:

- Multi-TeV Lepton Collider
<table>
<thead>
<tr>
<th>Parameter</th>
<th>Units</th>
<th>Startup Operation</th>
<th>Production Operation</th>
<th>High Resolution</th>
<th>High Luminosity</th>
<th>Multi-TeV Baselines</th>
<th>Accounts for Site Radiation Mitigation</th>
</tr>
</thead>
<tbody>
<tr>
<td>CoM Energy</td>
<td>TeV</td>
<td>0.126</td>
<td>0.126</td>
<td>0.35</td>
<td>0.35</td>
<td>1.5</td>
<td>3.0</td>
</tr>
<tr>
<td>Avg. Luminosity</td>
<td>10^{34}cm2s$^{-1}$</td>
<td>0.0017</td>
<td>0.008</td>
<td>0.07</td>
<td>0.6</td>
<td>1.25</td>
<td>4.4</td>
</tr>
<tr>
<td>Beam Energy Spread</td>
<td>%</td>
<td>0.003</td>
<td>0.004</td>
<td>0.01</td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
</tr>
<tr>
<td>Higgs* or Top* Production/107sec</td>
<td></td>
<td>3,500*</td>
<td>13,500*</td>
<td>7,000*</td>
<td>60,000*</td>
<td>37,500*</td>
<td>200,000*</td>
</tr>
<tr>
<td>Circumference</td>
<td>km</td>
<td>0.3</td>
<td>0.3</td>
<td>0.7</td>
<td>0.7</td>
<td>2.5</td>
<td>4.5</td>
</tr>
<tr>
<td>No. of IPs</td>
<td></td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>Repetition Rate</td>
<td>Hz</td>
<td>30</td>
<td>15</td>
<td>15</td>
<td>15</td>
<td>15</td>
<td>12</td>
</tr>
<tr>
<td>β^*</td>
<td>cm</td>
<td>3.3</td>
<td>1.7</td>
<td>1.5</td>
<td>0.5</td>
<td>1 (0.5-2)</td>
<td>0.5 (0.3-3)</td>
</tr>
<tr>
<td>No. muons/bunch</td>
<td>10^{12}</td>
<td>2</td>
<td>4</td>
<td>4</td>
<td>3</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>No. bunches/beam</td>
<td></td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Norm. Trans. Emittance, ε_{TN}</td>
<td>π mm-rad</td>
<td>0.4</td>
<td>0.2</td>
<td>0.2</td>
<td>0.05</td>
<td>0.025</td>
<td>0.025</td>
</tr>
<tr>
<td>Norm. Long. Emittance, ε_{LN}</td>
<td>π mm-rad</td>
<td>1</td>
<td>1.5</td>
<td>1.5</td>
<td>10</td>
<td>70</td>
<td>70</td>
</tr>
<tr>
<td>Bunch Length, σ_z</td>
<td>cm</td>
<td>5.6</td>
<td>6.3</td>
<td>0.9</td>
<td>0.5</td>
<td>1</td>
<td>0.5</td>
</tr>
<tr>
<td>Proton Driver Power</td>
<td>MW</td>
<td>4^2</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>4</td>
</tr>
</tbody>
</table>

* Could begin operation with Project X Stage II beam

Exquisite Energy Resolution Allows Direct Measurement of Higgs Width

Success of advanced cooling concepts \Rightarrow several $\times 10^{32}$

Site Radiation mitigation with depth and lattice design: ≤ 10 TeV
CONCLUSION
Concluding Remarks

- Neutrino Factory capabilities offer the precision microscope that will likely be needed to fully probe the physics of the neutrino sector

- For the last 3 years US Muon Accelerator Program has pursued options to deploy muon accelerator capabilities
 - Near term (νSTORM)
 - Long term (NuMAX)
 - Along with the possibility of a follow-on muon collider option

- In light of the recent P5 recommendations that this directed facility effort no longer fits within the budget-constrained US research portfolio, the US effort is entering a ramp-down phase

- Nonetheless, the precision capabilities offered by Neutrino Factories represent a key option for the future of ν physics