# Volume (in-)dependence for SU(N) gauge theories with twisted boundary conditions

#### Mateusz Koreń

Instituto de Física Teórica UAM-CSIC, Madrid

In collaboration with Margarita García Peréz, Antonio González-Arroyo and Masanori Okawa

ICHEP 2014, Valencia, 04-07-2014



## Table of contents

- Introduction
- 2 Calculation
- 3 Results
- 4 Conclusions & outlook

• Eguchi, Kawai, 82: Consider two pure gauge lattice theories:

• 
$$S_{\text{gauge}} = \beta \sum_{x,\mu < \nu} (1 - \frac{1}{N} \operatorname{ReTr} U_{x,\mu\nu}^{\square})$$

• 
$$S_{EK} = \beta \sum_{\mu < \nu} (1 - \frac{1}{N} \operatorname{ReTr} U_{\mu\nu}^{\square})$$

• Eguchi, Kawai, 82: Consider two pure gauge lattice theories:

• 
$$S_{\text{gauge}} = \beta \sum_{x,\mu < \nu} (1 - \frac{1}{N} \mathrm{ReTr} U_{x,\mu\nu}^{\square})$$

• 
$$S_{EK} = \beta \sum_{\mu < \nu} (1 - \frac{1}{N} \text{ReTr} U_{\mu} U_{\nu} U_{\mu}^{\dagger} U_{\nu}^{\dagger})$$

## One slide on Eguchi-Kawai reduction

• Eguchi, Kawai, 82: Consider two pure gauge lattice theories:

• 
$$S_{\text{gauge}} = \beta \sum_{\mathbf{x}, \mu < \nu} (1 - \frac{1}{N} \text{ReTr} U_{\mathbf{x}, \mu \nu}^{\square})$$

• 
$$S_{EK} = \beta \sum_{\mu < \nu} (1 - \frac{1}{N} \text{ReTr} U_{\mu} U_{\nu} U_{\mu}^{\dagger} U_{\nu}^{\dagger})$$

• They satisfy the same loop equations in  $N \to \infty \Leftrightarrow$  no spontaneous breaking of  $(\mathbb{Z}_N)^4 \to U(1)^4$  center symmetry

Conclusions & outlook

## One slide on Eguchi-Kawai reduction

Eguchi, Kawai, 82: Consider two pure gauge lattice theories:

• 
$$S_{\text{gauge}} = \beta \sum_{\mathbf{x}, \mu < \nu} (1 - \frac{1}{N} \text{ReTr} U_{\mathbf{x}, \mu \nu}^{\square})$$

• 
$$S_{EK} = \beta \sum_{\mu < \nu} (1 - \frac{1}{N} \operatorname{Re} \operatorname{Tr} U_{\mu} U_{\nu} U_{\mu}^{\dagger} U_{\nu}^{\dagger})$$

- They satisfy the same loop equations in  $N \to \infty \Leftrightarrow$  no spontaneous breaking of  $(\mathbb{Z}_N)^4 \to U(1)^4$  center symmetry
- But, in fact the symmetry is broken (Bhanot, Heller, Neuberger, 82).
- Fix 1 (Narayanan, Neuberger, 2003): Partial reduction (in  $L^4$  box with big enough L; note that  $L \to \infty$  in the continuum limit)
- Fix 2 (Gonzalez-Arroyo, Okawa, 83, 10): add twisted boundary conditions to the model.



# (Another) one slide on Eguchi-Kawai reduction

000



Comparison of plaquette in TEK and p.b.c. lattice calculations (from Gonzalez-Arroyo's Lattice 2014 talk).



## Statement of the problem & notation

- Problem: calculate glueball masses in pure gauge SU(N) theory on spatial two-torus of fixed lattice size L with twisted boundary conditions.
- For numerical investigation: lattice model with Wilson action, periodic b.c. in time:

$$S = Nb \sum_{n \in \mathbb{Z}^3_{(L,L,T)}} \sum_{\mu \neq \nu} (N - z^*_{\mu \nu}(n) P_{\mu \nu}(n)),$$

where  $z_{\mu\nu}(n)=\exp(i\epsilon_{ij}\frac{2\pi k}{N})$  at corner plaquettes in each (1,2)-plane, and 1 everywhere else.

- Inverse 't Hooft coupling:  $b = 1/g^2 N$
- Integer  $\bar{k}$  defined as:  $k\bar{k} = 1 \pmod{N}$



#### Motivation

Garcia-Perez, Gonzalez-Arroyo, Okawa, 13, 14:

 Electric flux energies (calculated from Polyakov loop correlators) in the theory only depend on NL and twist parameters.

#### Motivation

Garcia-Perez, Gonzalez-Arroyo, Okawa, 13, 14:

- Electric flux energies (calculated from Polyakov loop correlators) in the theory only depend on NL and twist parameters.
- More precisely: on  $x=\frac{NL}{4\pi b}$  and  $\tilde{\theta}=\frac{2\pi \bar{k}}{N}$
- Shown in perturbation theory to all orders, and also by lattice simulations in wide range of b.
- Can avoid tachyonic instabilities by keeping  $k, \bar{k} \propto N$ , just as in Twisted Eguchi-Kawai model (Gonzalez-Arroyo, Okawa, 10)
- Can be thought of as a strong form of TEK-like volume independence, also valid for finite N.



#### What we calculate

- Goal (long term): verify if this result holds also in the zero electric flux (glueball) sector.
- Goal (for this talk): calculate the mass of the lightest  $0^{++}$  glueball as a function of b, for 2 different values of N.
- ullet We take two theories chosen so that LN and  $ilde{ heta}$  are close:
  - **1** N = 5, L = 14,  $\bar{k} = 2$  (NL = 70,  $\tilde{\theta} \approx 2.513$ )
  - ② N = 17, L = 4,  $\bar{k} = 7$  (NL = 68,  $\tilde{\theta} \approx 2.587$ )

## What we calculate

- Goal (long term): verify if this result holds also in the zero electric flux (glueball) sector.
- Goal (for this talk): calculate the mass of the lightest  $0^{++}$  glueball as a function of b, for 2 different values of N.
- ullet We take two theories chosen so that LN and  $ilde{ heta}$  are close:

**1** 
$$N = 5$$
,  $L = 14$ ,  $\bar{k} = 2$  ( $NL = 70$ ,  $\tilde{\theta} \approx 2.513$ )

② 
$$N = 17$$
,  $L = 4$ ,  $\bar{k} = 7$  ( $NL = 68$ ,  $\tilde{\theta} \approx 2.587$ )

- Knowledge from earlier works:
  - ullet  $x\lesssim 0.5~(b\gtrsim 10)$  perturbative, small volume region
  - $0.5 \lesssim x \lesssim 4 \ (1.5 \lesssim b \lesssim 10)$  intermediate region
  - $x \gtrsim 4$  ( $b \lesssim 1.5$ ) large volume region

Intent: probe glueball mass in all 3 regions.



## How we calculate

- Use correlations of rectangular Wilson loops and moduli of multi-winding Polyakov loops  $|\operatorname{Tr} P^n|^2$
- Use 3 different levels of smearing and large loops, trying to follow the physical size of the glueball (including loops larger than L for small and moderate x)
- Construct:  $C_{ij}(t) = \sum_{t'} \langle O_i(t'+t)O_j(t') \rangle \langle O_i(t'+t) \rangle \langle O_j(t') \rangle$

#### How we calculate



 $C_{RR}(4)$  is the (normalized) correlator of W(R,R) at distance 4 lattice sites,  $N=5, L=14, \bar{k}=2.$ 



## How we calculate

- Use correlations of rectangular Wilson loops and moduli of multi-winding Polyakov loops  $|\operatorname{Tr} P^n|^2$
- Use 3 different levels of smearing and large loops, trying to follow the physical size of the glueball (including loops larger than L for small and moderate x)
- Construct:  $C_{ij}(t) = \sum_{t'} \langle O_i(t'+t) O_j(t') \rangle \langle O_i(t'+t) \rangle \langle O_j(t') \rangle$
- Do GEVP:

$$C(t_1)v = C(t_0)\lambda v$$

to find v, use them to change the basis  $C(t) \to \tilde{C}(t) \ \forall t$  and fit to diagonal elements of  $\tilde{C}(t)$  (after finding the plateau)

• Technicalities: use  $\approx 12$  operators for  $C_{ij}(t)$ , estimate if basis allows reliable GEVP by first solving it on non-symmetrized C(t), use quad precision for GEVP and basis change



## Results: work in progress



• Beware: results preliminary, all errors only statistical.

## Results: work in progress



- Beware: results preliminary, all errors only statistical.
- Since last week: the small-x region under better control by simulations using replicas and T extended from 36 to 72.



## Results: example mass plateau



Effective mass plateau for  $N=5, L=14, \bar{k}=2, b=2$  (x=2.8),  $Nmeas=10^5$ 



## Results: example mass plateau



Effective mass plateau for  $N=5, L=14, \bar{k}=2, b=2$  (x = 2.8), Nmeas =  $10^5$ 



## Results: scan in x



The theoretical expectations



## Results: scan in x



The results for both theories, note the results for doubled L in the large x region.



## Conclusions

- Extracted  $0^{++}$  glueball mass in large range of couplings with constant lattice size L for N=5 and N=17 with matching NL and electric flux  $\tilde{\theta}$ .
- Both N in good agreement in wide range of couplings, as expected by the x-scaling hypothesis!

## Conclusions

- Extracted  $0^{++}$  glueball mass in large range of couplings with constant lattice size L for N=5 and N=17 with matching NL and electric flux  $\tilde{\theta}$ .
- Both N in good agreement in wide range of couplings, as expected by the x-scaling hypothesis!

#### TODO list:

- Systematics: better extraction of plateaux, autocorrelations (slow modes in small x?)
- Add other quantum numbers (broader basis of operators?), especially 2<sup>++</sup>.
- Investigate other  $\bar{k}$  (and possibly N) values.



## Outlook

- In principle, extension to 4 dimensions possible, done in PT (Garcia-Perez, Gonzalez-Arroyo, Okawa, Latt13)
- Need even number of twisted directions, physics governed by  $N^{2/d}L$  and  $\tilde{\theta}$ .

#### Outlook

- In principle, extension to 4 dimensions possible, done in PT (Garcia-Perez, Gonzalez-Arroyo, Okawa, Latt13)
- Need even number of twisted directions, physics governed by  $N^{2/d}L$  and  $\tilde{\theta}$ .
- Addition of adjoint fermions straightforward (in 4D: connection of  $N_f$  adjoints to QCD with  $2N_f$  in Corrigan-Ramond limit via large-N equivalences), fundamental fermions more problematic.
- A priori, possible even to calculate meson masses on single site lattice - Quenched Momentum Prescription (Narayanan, Neuberger, 05)

## Outlook

- In principle, extension to 4 dimensions possible, done in PT (Garcia-Perez, Gonzalez-Arroyo, Okawa, Latt13)
- Need even number of twisted directions, physics governed by  $N^{2/d}L$  and  $\tilde{\theta}$ .
- Addition of adjoint fermions straightforward (in 4D: connection of  $N_f$  adjoints to QCD with  $2N_f$  in Corrigan-Ramond limit via large-N equivalences), fundamental fermions more problematic.
- A priori, possible even to calculate meson masses on single site lattice - Quenched Momentum Prescription (Narayanan, Neuberger, 05)

Thank you for your attention!

