Inclusion of isospin breaking effects in lattice simulations

Antonin J. Portelli
(University of Southampton)
Lattice 2014 last week in Columbia University (NYC, USA)
Slides: https://indico.bnl.gov/conferenceDisplay.py?confId=736
What’s new?
What’s new?

- [MILC, 2014] — C. Bernard talk at Lattice 2014
 - update of quark masses and Dashen’s theorem corrections using electro-quenched simulations
 - new insights on finite-volume effects
What’s new?

 - update of quark masses and Dashen’s theorem corrections using electro-quenched simulations
 - new insights on finite-volume effects

❖ [QCDSF, 2014] (pure QCD) — R. Horsley talk at Lattice 2014
 - study of the $\Sigma^0 - \Lambda^0$ system
What’s new?

 • update of quark masses and Dashen’s theorem corrections using electro-quenched simulations
 • new insights on finite-volume effects

❖ [QCDSF, 2014] (pure QCD) — R. Horsley talk at Lattice 2014
 • study of the $\Sigma^0 - \Lambda^0$ system

❖ [BMWc, 2014] (EQ)
 • update of quark masses and Dashen’s theorem using electro-quenched simulations
What’s new?

 • update of quark masses and Dashen’s theorem corrections using electro-quenched simulations
 • new insights on finite-volume effects

❖ [QCDSF, 2014] (pure QCD) — R. Horsley talk at Lattice 2014
 • study of the $\Sigma^0 \rightarrow \Lambda^0$ system

❖ [BMWc, 2014] (EQ)
 • update of quark masses and Dashen’s theorem using electro-quenched simulations

 • finite-volume corrections to hadron masses in NREFTs
What’s new?
What’s new?

- [QCDSF, 2014] — G. Schierholz talk at Lattice 2014
 - new full $N_f = 1+1+1$ QCD+QED simulations
 - preliminary results for the baryon octet splittings
What’s new?

 • new full $N_f = 1+1+1$ QCD+QED simulations
 • preliminary results for the baryon octet splittings
 • new set of $N_f = 1+1+1+1$ full QCD+QED simulations
 • extensive analytical/numerical study of finite-volume effects
 • high precision computation of the hadron spectrum splittings (continuum, infinite volume and physical point extrapolation)
• Motivations
• Lattice QCD+QED
• Update on electro-quenched results
• Isospin splittings in the hadron spectrum
• Summary & outlook
Motivations
Isospin symmetry breaking

- Isospin symmetric world: up and down quarks are particles with identical physical properties.
Isospin symmetry breaking

- Isospin symmetric world: up and down quarks are particles with identical physical properties.
- Isospin symmetry is explicitly broken by:
 - the up and down quark mass difference
 \[\frac{|m_u - m_d|}{\Lambda_{QCD}} \simeq 0.01 \]
 - the up and down electric charge difference
 \[\alpha \simeq 0.0073 \]

<table>
<thead>
<tr>
<th></th>
<th>up</th>
<th>down</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mass (MeV)</td>
<td>2.3(+0.7</td>
<td>-0.5)</td>
</tr>
<tr>
<td>Charge (e)</td>
<td>2/3</td>
<td>-1/3</td>
</tr>
</tbody>
</table>

source: [PDG, 2013]
Nucleon mass splitting

- Well known experimentally:

\[M_n - M_p = 1.2933322(4) \text{ MeV} \]

source: [PDG, 2013]
Nucleon mass splitting

- Well known experimentally:

\[M_n - M_p = 1.2933322(4) \text{ MeV} \]

source: [PDG, 2013]

- needed for **proton stability**
Nucleon mass splitting

- Well known experimentally:
 \[M_n - M_p = 1.2933322(4) \text{ MeV} \]

 source: [PDG, 2013]

- needed for proton stability

- determines through \(\beta^- \)-decay the stable nuclide chart
Nucleon mass splitting

- Well known experimentally:
 \[M_n - M_p = 1.2933322(4) \text{ MeV} \]
 source: [PDG, 2013]
- needed for proton stability
- determines through \(\beta \)-decay the stable nuclide chart
- initial condition for Big-Bang nucleosynthesis
Dashen’s theorem

In the SU(3) chiral limit [Dashen, 1969]:

\[\Delta_{\text{QED}} M_K^2 = \Delta_{\text{QED}} M_\pi^2 + O(\alpha m_s) \]
Dashen’s theorem

- In the SU(3) chiral limit [Dashen, 1969]:
 \[\Delta_{\text{QED}} M_K^2 = \Delta_{\text{QED}} M_\pi^2 + O(\alpha m_s) \]

- How large are the corrections? FLAG parametrisation:
 \[\varepsilon = \frac{\Delta_{\text{QED}} M_K^2 - \Delta_{\text{QED}} M_\pi^2}{\Delta M_\pi^2} \]
Dashen’s theorem

- In the SU(3) chiral limit [Dashen, 1969]:
 \[\Delta_{\text{QED}} M_K^2 = \Delta_{\text{QED}} M_\pi^2 + O(\alpha m_s) \]

- How large are the corrections? FLAG parametrisation:
 \[\varepsilon = \frac{\Delta_{\text{QED}} M_K^2 - \Delta_{\text{QED}} M_\pi^2}{\Delta M_\pi^2} \]

- \(\varepsilon \) is important to determine light quark mass ratios
Lattice QCD+QED
Lattice QCD

- Lattice QCD simulation: Monte-Carlo estimation of discretised QCD functional integrals
Lattice QCD

- Lattice QCD simulation: *Monte-Carlo estimation of discretised QCD functional integrals*
- Discretised Yang-Mills action: [K. Wilson, 1974]
Lattice QCD

- Lattice QCD simulation: Monte-Carlo estimation of discretised QCD functional integrals
- Discretised Yang-Mills action: [K. Wilson, 1974]
- Discretised Dirac action: chiral symmetry must be broken (Nielsen-Ninomiya theorem), many possible solutions
Lattice QCD

- Lattice QCD simulation: Monte-Carlo estimation of discretised QCD functional integrals
- Discretised Yang-Mills action: [K. Wilson, 1974]
- Discretised Dirac action: chiral symmetry must be broken (Nielsen-Ninomiya theorem), many possible solutions
- Fermionic integrals can be performed analytically (Wick’s contractions)
Lattice QCD

- Lattice QCD simulation: **Monte-Carlo estimation of discretised QCD functional integrals**
- Discretised Yang-Mills action: [K. Wilson, 1974]
- Discretised Dirac action: chiral symmetry must be broken (Nielsen-Ninomiya theorem), **many possible solutions**
- Fermionic integrals can be performed analytically (Wick’s contractions)
- Gauge integrals are computed stochastically
Lattice QCD

- Lattice QCD simulation: Monte-Carlo estimation of discretised QCD functional integrals
- Discretised Yang-Mills action: [K. Wilson, 1974]
- Discretised Dirac action: chiral symmetry must be broken (Nielsen-Ninomiya theorem), many possible solutions
- Fermionic integrals can be performed analytically (Wick’s contractions)
- Gauge integrals are computed stochastically
- Extremely expensive, but ab-initio
Non-compact lattice QED

- Naively discretised Maxwell action:

\[S[A_\mu] = \frac{1}{4} \sum_{\mu,\nu} (\partial_\mu A_\nu - \partial_\nu A_\mu)^2 \]
Non-compact lattice QED

- Naively discretised Maxwell action:

\[S[A_\mu] = \frac{1}{4} \sum_{\mu,\nu} \left(\partial_\mu A_\nu - \partial_\nu A_\mu \right)^2 \]

- Pure gauge theory is **free**, it can be solved **exactly**
Non-compact lattice QED

- Naively discretised Maxwell action:
 \[S[A_\mu] = \frac{1}{4} \sum_{\mu,\nu} (\partial_\mu A_\nu - \partial_\nu A_\mu)^2 \]

- Pure gauge theory is free, it can be solved exactly

- Gauge invariance is preserved
Non-compact lattice QED

- Naively discretised Maxwell action:

\[S[A_\mu] = \frac{1}{4} \sum_{\mu,\nu} (\partial_\mu A_\nu - \partial_\nu A_\mu)^2 \]

- Pure gauge theory is free, it can be solved exactly
- Gauge invariance is preserved
- No mass gap: large finite volume effects expected
Zero-mode subtraction

Finite volume: **momentum quantisation**

\[
\alpha \int \frac{d^4 k}{(2\pi)^4} \frac{1}{k^2} \cdots \quad \leftrightarrow \quad \frac{\alpha}{V} \sum_k \frac{1}{k^2} \cdots
\]
Zero-mode subtraction

Finite volume: **momentum quantisation**

\[\alpha \int \frac{d^4 k}{(2\pi)^4} \frac{1}{k^2} \cdots \quad \leftrightarrow \quad \frac{\alpha}{V} \sum_k \frac{1}{k^2} \cdots \]

Possibly IR divergent, but not for physical quantities
Zero-mode subtraction

Finite volume: **momentum quantisation**

\[\alpha \int \frac{d^4 k}{(2\pi)^4} \frac{1}{k^2} \cdots \quad \leftrightarrow \quad \frac{\alpha}{V} \sum_k \frac{1}{k^2} \cdots \]

Possibly IR divergent, but not for physical quantities

Contains a straight 1/0!
Zero-mode subtraction

- This problem can be solved by removing zero modes
Zero-mode subtraction

- This problem can be solved by removing zero modes
- Many possible schemes: modification of $A_\mu(k)$ on a set of measure 0
Zero-mode subtraction

- This problem can be solved by removing zero modes
- Many possible schemes:
 modification of $A_\mu(k)$ on a set of measure 0
- Different schemes: different finite volume behaviours
Zero-mode subtraction

- This problem can be solved by **removing zero modes**
- **Many possible schemes:**
 - modification of $A_{\mu}(k)$ on a set of measure 0
- **Different schemes:** **different finite volume behaviours**
- Some more interesting than others
QED_{TL} zero-mode subtraction

- QED_{TL}: $A_{\mu}(0) = 0$
 Mostly used in all simulations so far
QED\textsubscript{TL} zero-mode subtraction

- **QED\textsubscript{TL}:** $A_{\mu}(0) = 0$
 Mostly used in all simulations so far

- **With QED\textsubscript{TL},** the $T \to \infty$, $L = \text{cst.}$ limit can diverge:

\[
\frac{\alpha}{V} \sum_{k \neq 0} \frac{1}{k^2} \cdots \quad \leftrightarrow \quad \frac{\alpha}{L^3} \int \frac{dk_0}{2\pi} \sum_{k} \frac{1}{k^2} \cdots
\]
QED\textsubscript{TL} zero-mode subtraction

- **QED\textsubscript{TL}:** \(A_\mu(0) = 0 \)
 Mostly used in all simulations so far

- With QED\textsubscript{TL}, the \(T \to \infty, \ L = \text{cst.} \) limit can diverge:

\[
\frac{\alpha}{V} \sum_{k \neq 0} \frac{1}{k^2} \cdots \quad \longrightarrow \quad \frac{\alpha}{L^3} \int \frac{dk_0}{2\pi} \sum_k \frac{1}{k^2} \cdots
\]

- **QED\textsubscript{TL}** does not have reflection positivity
Example — 1-loop QED\textsubscript{TL} [BMW\textsc{c}, 2014]:

\[m(T, L) \sim m \left\{ 1 - q^2 \alpha \left[\frac{\kappa}{2mL} \left(1 + \frac{2}{mL} \left[1 - \frac{\pi}{2\kappa} \frac{T}{L} \right] \right) \right] - \frac{3\pi}{(mL)^3} \left[1 - \frac{\coth(mT)}{2} \right] - \frac{3\pi}{2(mL)^4} \frac{L}{T} \right\} \]

up to exponential corrections, with \(\kappa = 2.83729 \ldots \)
Example — 1-loop QED$_{TL}$ [BMWc, 2014]:

\[m(T, L) \sim_{T,L \to +\infty} m \left\{ 1 - q^2 \alpha \left[\frac{\kappa}{2mL} \left(1 + \frac{2}{mL} \left[1 - \frac{\pi}{2\kappa} \frac{T}{L} \right] \right) \right. \\
- \left. \frac{3\pi}{(mL)^3} \left[1 - \frac{\coth(mT)}{2} \right] - \frac{3\pi}{2(mL)^4} \frac{L}{T} \right] \right\} \]

up to exponential corrections, with \(\kappa = 2.83729 \ldots \)

- Divergent finite volume effects with \(T \to \infty, L = \text{cst.} \)
QED\textsubscript{TL} finite-volume effects

- Example — 1-loop QED\textsubscript{TL} [BMWc, 2014]:

\[
m(T, L)_{T,L\to+\infty} \sim m \left\{ 1 - q^2 \alpha \left[\frac{\kappa}{2mL} \left(1 + \frac{2}{mL} \left[1 - \frac{\pi}{2\kappa} \frac{T}{L} \right] \right) \right]
- \frac{3\pi}{(mL)^3} \left[1 - \frac{\coth(mT)}{2} \right] - \frac{3\pi}{2(mL)^4} \frac{L}{T} \right\}
\]

up to exponential corrections, with $\kappa = 2.83729 \ldots$

- Divergent finite volume effects with $T \to \infty, L = \text{cst}$.
- Same behaviour independently discovered by MILC
QED\textsubscript{L} zero-mode subtraction

- QED\textsubscript{L}: \(A_\mu(k_0, 0) = 0 \)

inspired from [Hayakawa & Uno, 2008]
QED\textsubscript{L} zero-mode subtraction

- \textbf{QED}\textsubscript{L}: $A_\mu(k_0, 0) = 0$
 inspired from [Hayakawa & Uno, 2008]
- \textbf{QED}\textsubscript{L} maintains reflection positivity [BMWc, 2014]:

\textbf{QED}_L \text{ zero-mode subtraction}

- \textbf{QED}_L: \(A_\mu(k_0, 0) = 0 \)
 inspired from [Hayakawa & Uno, 2008]
- \textbf{QED}_L maintains reflection positivity [BMWc, 2014]:
- \textbf{QED}_L finite volume effects:

\[m(T, L) \underset{T,L \to +\infty}{\sim} m \left\{ 1 - q^2 \alpha \left[\frac{\kappa}{2mL} \left(1 + \frac{2}{mL} \right) - \frac{3\pi}{(mL)^3} \right] \right\} \]

inverse powers of \(L \), independent of \(T \)
Finite-volume effects

Pure QED simulations (quenched) from [BMWc, 2014]
Finite-volume effects

- What about composite particles \((QCD + QED)\)?
Finite-volume effects

- What about composite particles (QCD + QED)?
- [Hayakawa & Uno, 2008]: SU(3) PQChPT
Finite-volume effects

- What about composite particles (QCD + QED)?
- [Hayakawa & Uno, 2008]: SU(3) PQChPT
- [RBC-UKQCD, 2010]: SU(2) PQChPT + heavy kaons
Finite-volume effects

- What about composite particles (QCD + QED)?
- [Hayakawa & Uno, 2008]: SU(3) PQChPT
- [RBC-UKQCD, 2010]: SU(2) PQChPT + heavy kaons
- [Davoudi & Savage, 2014]: NREFTs

\[
m(L) \xrightarrow{L \to +\infty} m \left\{ 1 - q^2 \alpha \left[\frac{\kappa}{2mL} \left(1 + \frac{2}{mL}\right) + O \left(\frac{1}{L^3}\right)\right] \right\}
\]
Finite-volume effects

- What about composite particles (QCD + QED)?
- [Hayakawa & Uno, 2008]: SU(3) PQChPT
- [RBC-UKQCD, 2010]: SU(2) PQChPT + heavy kaons
- [Davoudi & Savage, 2014]: NREFTs mesons, baryons, nuclei and HVP

\[m(L) \sim m \left\{ 1 - q^2 \alpha \left[\frac{\kappa}{2mL} \left(1 + \frac{2}{mL} \right) + O \left(\frac{1}{L^3} \right) \right] \right\} \]

- [BMWc, 2014]: Ward identities: NLO is universal
Electro-quenched approximation

- Electro-quenched approximation: charged valence quarks, but neutral sea quarks
Electro-quenched approximation

- Electro-quenched approximation: charged valence quarks, but neutral sea quarks
- Non-unitary theory (partially quenched)
Electro-quenched approximation

- Electro-quenched approximation: **charged valence quarks**, but **neutral sea quarks**
- **Non-unitary** theory (partially quenched)
- **Greatly reduce** the computational cost
Electro-quenched approximation:

- charged valence quarks, but neutral sea quarks
- Non-unitary theory (partially quenched)
- Greatly reduce the computational cost
- Missing contributions are large-N_c and SU(3) flavour suppressed: $O(10\%)$ of EM effects
Update on electro-quenched results
EQ results for the baryon spectrum

EQ results for ε

[Maltman and Kotchan, 1990]
[Donoghue et al., 1993]
[Bijnens, 1993]
[Baur and Urech, 1996]
[Bijnens and Prades, 1997]
[Donoghue and Perez, 1997]
[Gao et al., 1997]
[Moussallam, 1997]
[Duncan et al., 1996] (quenched QCD)
[RBC-UKQCD, 2007]
[RBC-UKQCD, 2010]
[RM123, 2013]
[BMWc, 2014] (EQ, preliminary)
[MILC, 2014] (preliminary)
EQ results for light quark masses

- PDG 2013 band
- [Duncan et al., 1996] (quenched QCD)
- [RBC-UKQCD, 2007]
- [RBC-UKQCD, 2010]
- [RM123, 2013]
- [BMWc, 2014] (EQ, preliminary)
- [MILC, 2014] (preliminary)
- [PACS-CS, 2012]
Isospin splittings in the hadron spectrum
[QCDSF, 2014]: progress summary

- $N_f = 1+1+1$
- full QCD+QED simulations in progress
[QCDSF, 2014]: progress summary

- $N_f = 1+1+1$
 full QCD+QED simulations in progress
- computational strategy is a continuation of [arXiv:1102.5300]
[QCDSF, 2014]: progress summary

- $N_f = 1 + 1 + 1$
 full QCD+QED simulations in progress

- computational strategy is a continuation of [arXiv:1102.5300]

- start from the SU(3) symmetric point and move keeping $m_u + m_d + m_s$ constant
[QCDSF, 2014]: progress summary

- $N_f = 1+1+1$
 full QCD+QED simulations in progress

- computational strategy
 is a continuation of [arXiv:1102.5300]

- start from the SU(3) symmetric point and
 move keeping $m_u + m_d + m_s$ constant

more details: G. Schierholz talk at Lattice 2014
[BMWC, 2014]: mass splitting calculation

- many smeared sources per configurations (O(100))
[BMWc, 2014]: mass splitting calculation

- many smeared sources per configurations (O(100))
- electric charge renormalisation using Wilson flow
[BMWc, 2014]: mass splitting calculation

- many smeared sources per configurations (O(100))
- electric charge renormalisation using Wilson flow
- small extrapolation to the physical point (similar to [BMWc, 2013])
[BMWc, 2014]: mass splitting calculation

- many smeared sources per configurations (O(100))
- electric charge renormalisation using Wilson flow
- small extrapolation to the physical point (similar to [BMWc, 2013])
- Systematic error based on BMW’s histogram method. Weights are based on the goodness of the fits, flat and Akaike’s information criterion (overfitting is penalised)
[BMWc, 2014]: mass splitting calculation

- **many smeared sources** per configurations (O(100))
- Electric charge renormalisation using **Wilson flow**
- Small extrapolation to the physical point (similar to [BMWc, 2013])
- Systematic error based on BMW’s histogram method. Weights are based on the goodness of the fits, flat and Akaike’s information criterion (**overfitting is penalised**)
- O(500) analyses per mass splitting
[BMWc, 2014]: finite-volume study

\[\chi^2/\text{dof} = 0.86 \] (A)

\[\chi^2/\text{dof} = 0.90 \] (B)

\[(aM_{K^0})^2 - (aM_{K^+})^2 \]

LO
NLO
NNLO

1/(aL)

0.237
0.238
0.238
0.238
\[\Delta_{CG} = \Delta M_N - \Delta M_\Sigma + \Delta M_\Xi \] (Coleman-Glashow relation)
What is the mass difference between $\bar{\Xi}_{cc}^+$ and $\bar{\Xi}_{cc}^{++}$ (including sign)?)?

I do not care how you calculate it (HQET, Lattice, ...), JUST DO IT

J. Engelfried, LHC Workshop 2013, Trento

$\Delta CG = \Delta M_N - \Delta M_\Sigma + \Delta M_\Xi$ (Coleman-Glashow relation)
Results for the nucleon mass splitting

\[(M_n - M_p)_{\text{QED}} \text{ (MeV)} \]

\[(M_n - M_p)_{\text{QCD}} \text{ (MeV)} \]

-2.5 -2 -1.5 -1 -0.5 0

1 1.5 2 2.5 3 3.5 4 4.5

[Gasser & Leutwyler, 1982]
no \textit{beta}-decay
experiment

\[(M_n - M_p)_{\text{QED}} \]
Results for the nucleon mass splitting

\[(M_n - M_p)_{QED} \text{ (MeV)} \]

\[(M_n - M_p)_{QCD} \text{ (MeV)} \]

-2.5 -2 -1.5 -1 -0.5 0

1 1.5 2 2.5 3 3.5 4 4.5

[Gasser & Leutwyler, 1982]
[Walker-Loud et al., 2012]
no beta-decay
experiment
Results for the nucleon mass splitting

\[(M_n - M_p)_{\text{QED}} \] (MeV)

\[(M_n - M_p)_{\text{QCD}} \] (MeV)

-2.5 -2 -1.5 -1 -0.5 0

1 1.5 2 2.5 3 3.5 4 4.5

[Gasser & Leutwyler, 1982]
[Walker-Loud et al., 2012]
[NPLQCD, 2007]

no beta-decay

- experiment
Results for the nucleon mass splitting

\[(M_n - M_p)_{QED} \text{ (MeV)}\]
\[(M_n - M_p)_{QCD} \text{ (MeV)}\]

- [Gasser & Leutwyler, 1982]
- [Walker-Loud et al., 2012]
- [NPLQCD, 2007]
- [QCDSF, 2012]
- no beta-decay
- experiment
Results for the nucleon mass splitting

\[(M_n - M_p)_{\text{QED}} \text{ (MeV)} \]

\[(M_n - M_p)_{\text{QCD}} \text{ (MeV)} \]

[Gasser & Leutwyler, 1982]
[Walker-Loud et al., 2012]
[NPLQCD, 2007]
[QCDSF, 2012]
[RM123, 2013]

no beta-decay

experiment
Results for the nucleon mass splitting

\[(M_n - M_p)_{\text{QED}} \text{(MeV)}\]
\[(M_n - M_p)_{\text{QCD}} \text{(MeV)}\]

\[\text{[Gasser & Leutwyler, 1982]}\]
\[\text{[Walker-Loud et al., 2012]}\]
\[\text{[NPLQCD, 2007]}\]
\[\text{[QCDSF, 2012]}\]
\[\text{[RM123, 2013]}\]
\[\text{[Shanahan et al., 2012]}\]
\[\text{no beta-decay}\]
\[\text{experiment}\]
Results for the nucleon mass splitting

\[(M_n - M_p)_{\text{QED}} \quad (\text{MeV})\]

\[(M_n - M_p)_{\text{QCD}} \quad (\text{MeV})\]

-2.5 -2 -1.5 -1 -0.5 0 1 1.5 2 2.5 3 3.5 4 4.5

[Gasser & Leutwyler, 1982]
[Walker-Loud et al., 2012]
[NPLQCD, 2007]
[QCDSF, 2012]
[RM123, 2013]
[Shanahan et al., 2012]
no beta-decay
experiment
[RBC-UKQCD, 2010]
Results for the nucleon mass splitting

\[(M_n - M_p)_{QED} (\text{MeV})\]

\[(M_n - M_p)_{QCD} (\text{MeV})\]

[Gasser & Leutwyler, 1982]
[Walker-Loud et al., 2012]
[NPLQCD, 2007]
[QCDSF, 2012]
[RM123, 2013]
[Shanahan et al., 2012]
no beta-decay
experiment
[RBC-UKQCD, 2010]
[BMWc, 2013] (EQ)
Results for the nucleon mass splitting

\[(M_n - M_p)_{\text{QED}} \text{ (MeV)} \]

\[(M_n - M_p)_{\text{QCD}} \text{ (MeV)} \]

- [Gasser & Leutwyler, 1982]
- [Walker-Loud et al., 2012]
- [NPLQCD, 2007]
- [QCDSF, 2012]
- [RM123, 2013]
- [Shanahan et al., 2012]
- [RBC-UKQCD, 2010]
- [BMWc, 2013] (EQ)
- [BMWc, 2014]

no beta-decay

experiment
Results for the nucleon mass splitting

\[(M_n - M_p)_{QED} \] (MeV)

\[(M_n - M_p)_{QCD} \] (MeV)

-2.5 -2 -1.5 -1 -0.5 0 1 1.5 2 2.5 3 3.5 4 4.5

-2.5 -2 -1.5 -1 -0.5 0

\[\text{[Gasser & Leutwyler, 1982]}\]
\[\text{[Walker-Loud et al., 2012]}\]
\[\text{[NPLQCD, 2007]}\]
\[\text{[QCDSF, 2012]}\]
\[\text{[RM123, 2013]}\]
\[\text{[Shanahan et al., 2012]}\]
\[\text{no beta-decay}\]
\[\text{experiment}\]
\[\text{[RBC-UKQCD, 2010]}\]
\[\text{[BMWc, 2013]} \] (EQ)
\[\text{[BMWc, 2014]}\]
\[\text{[QCDSF, 2014]}\]
Summary & outlook
Summary
Summary

- We now have a good understanding of QCD+QED on a finite lattice
We now have a good understanding of QCD+QED on a finite lattice.

Finite-size effects on masses are now well controlled.
Summary

- We now have a good understanding of QCD+QED on a finite lattice
- Finite-size effects on masses are now well controlled
- [BMWc, 2014]: full simulations of the low-energy SM with a potential precision of $O\left(\left(\frac{N_c m_b^2}{\alpha^2}\right)^{-1}\right) \sim 10^{-4}$
Summary

- We now have a good understanding of QCD+QED on a finite lattice
- Finite-size effects on masses are now well controlled
- [BMWc, 2014]: full simulations of the low-energy SM with a potential precision of $\mathcal{O}[(N_c m_b^2)^{-1}, \alpha^2] \sim 10^{-4}$
- The isospin splittings in the hadron spectrum are determined with a high accuracy and full control of uncertainties
Summary

- We now have a good understanding of QCD+QED on a finite lattice
- Finite-size effects on masses are now well controlled
- [BMWc, 2014]: full simulations of the low-energy SM with a potential precision of $O[(N_c m_b^2)^{-1}, \alpha^2] \sim 10^{-4}$
- The isospin splittings in the hadron spectrum are determined with a high accuracy and full control of uncertainties
- The nucleon mass splitting is determined as a $> 5\sigma$ effect
Outlook
Outlook

- Unquenched computations of the light quark masses and Dashen’s theorem corrections
Outlook

- Unquenched computations of the light quark masses and Dashen’s theorem corrections
- QCD+QED decay constants are gauge variant and IR divergent. How to deal with that? First lattice attempt: [C.T. Sachrajda, Lattice 2014]
Outlook

- Unquenched computations of the light quark masses and Dashen’s theorem corrections

- QCD+QED decay constants are gauge variant and IR divergent. How to deal with that? First lattice attempt: [C.T. Sachrajda, Lattice 2014]

- Compute corrections to matrix elements ($K_{\ell 3}, K \rightarrow \pi\pi, \ldots$)
Outlook

- Unquenched computations of the light quark masses and Dashen’s theorem corrections
- QCD+QED decay constants are gauge variant and IR divergent. How to deal with that? First lattice attempt: [C.T. Sachrajda, Lattice 2014]
- Compute corrections to matrix elements ($K_{\ell 3}$, $K \rightarrow \pi \pi, \ldots$)
- QCD+QED to compute hadronic corrections to anomalous magnetic moments.
Thank you!
Backup
Full QCD + QED projects

<table>
<thead>
<tr>
<th></th>
<th>RBC-UKQCD</th>
<th>PACS-CS</th>
<th>QCDSF-UKQCD</th>
<th>BMWc</th>
</tr>
</thead>
<tbody>
<tr>
<td>arXiv</td>
<td>1006.1311</td>
<td>1205.2961</td>
<td>1311.4554 and Lat. 2014</td>
<td>1406.4088</td>
</tr>
<tr>
<td>fermions</td>
<td>DWF</td>
<td>clover</td>
<td>clover</td>
<td>clover</td>
</tr>
<tr>
<td>N_f</td>
<td>2+1</td>
<td>1+1+1</td>
<td>1+1+1</td>
<td>1+1+1+1</td>
</tr>
<tr>
<td>method</td>
<td>reweighting</td>
<td>reweighting</td>
<td>RHMC</td>
<td>RHMC</td>
</tr>
<tr>
<td>min(M_π) (MeV)</td>
<td>420</td>
<td>135</td>
<td>250</td>
<td>195</td>
</tr>
<tr>
<td>a (fm)</td>
<td>0.11</td>
<td>0.09</td>
<td>0.08</td>
<td>0.06 — 0.10</td>
</tr>
<tr>
<td>$#a$</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>4</td>
</tr>
<tr>
<td>L (fm)</td>
<td>1.8</td>
<td>2.9</td>
<td>1.9 — 2.6</td>
<td>2.1 — 8.3</td>
</tr>
<tr>
<td>$#L$</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>11</td>
</tr>
</tbody>
</table>
[BMWc, 2014]: QED simulations

\[L(m_{2L} - m_L) \]

\[L_{m_L} = 2 \]

unsmeared, Wilson

smeared, clover

\(a m_L \)
[BMWc, 2014]: charge renormalisation

\[\Delta M_{\pi}^2 [\text{MeV}^2] \]

\[\frac{e^2}{4\pi} \]

bare
renormalized
[BMWC, 2014]: charm discretisation effects

\[\Delta M_{\chi} [\text{MeV}] \]

\[\Delta D \quad \chi^2 / \text{dof}=0.94 \]

\[\Delta \Xi_{cc} \quad \chi^2 / \text{dof}=1.30 \]