

# P-odd and Naïve-T-odd asymmetries in W+jet production and top-decay processes

## Hiroshi Yokoya (U. of Toyama)

R.Frederix, K.Hagiwara, T.Yamada & HY, arXiv:1407.1016, K.Hagiwara, K.Hikasa & HY, Phys.Rev.Lett. 97 (2006) 221802, K.Hagiwara, K.Mawatari & HY, JHEP 0712 (2010) 041.

ICHEP2014, Valencia, Spain, 7/2-9 (2014)

#### Outline

- 1. Parity-odd and naïve-T-odd observables
- 2. PQCD prediction in hard processes
- 3. Observability at collider experiments [W+jet @LHC]
- 4. Summary

## Naïve-T-reversal, T-reversal and Parity reversal

In this talk, I consider the following basic transformation
 which is related with time and parity reversal in quantum theory.

## Naïve-T ( $\widetilde{T}$ , $T_N$ ):

$$(\vec{p}, \vec{s}) \rightarrow (-\vec{p}, -\vec{s})$$
  $\widetilde{\mathsf{T}} | i(\vec{p}, \vec{s}) \rangle = | \tilde{i}(-\vec{p}, -\vec{s}) \rangle$ 

T: 
$$(\vec{p}, \vec{s}) \rightarrow (-\vec{p}, -\vec{s})$$
  $T|i(\vec{p}, \vec{s})\rangle = \langle \tilde{i}(-\vec{p}, -\vec{s})|$ 

$$\mathsf{P}: \quad (\vec{p}, \vec{s}) \rightarrow (-\vec{p}, \vec{s})$$

• Without spins of particles, naïve-T- and parity-reversal behave as the same.

## Naïve-T-odd and Unitarity of S-matrix

De Rujula, Kaplan, De Rafael (71)

• Unitarity of S-matrix  $SS^{\dagger}=1$   $S_{fi}=\delta_{fi}+i(2\pi)^4\delta^4(P_f-P_i)T_{fi}$ 

$$T_{fi}-T_{if}^*=iA_{fi}$$
 where  $\underline{A_{fi}=\sum_n T_{nf}^*T_{ni}(2\pi)^4\delta^4(P_n-P_i)}_{\text{absorptive part}}$ 

gives 
$$|T_{fi}|^2 = |T_{if}|^2 - 2\operatorname{Im}(T_{if}^*A_{fi}) + |A_{fi}|^2$$

• Naïve-T-odd quantity

) subtract 
$$|T_{\widetilde{fi}}|^2$$

$$|T_{fi}|^2 - |T_{\widetilde{fi}}|^2 = (|T_{if}|^2 - |T_{\widetilde{fi}}|^2) - 2\operatorname{Im}(T_{fi}^*A_{fi}) - |A_{fi}|^2$$
 Time-reversal violation

→ emerges from the absorptive parts of the scattering amplitude

## Absorptive part of scattering amplitudes

In perturbation theory, the absorptive part of scattering amplitudes can be calculated by the imaginary part of the loop amplitudes.

$$\int d\Phi_2 \left( \frac{1}{2} \right) \left( \frac{1}$$

Cutkosky rule

Therefore, measurement of naïve-T-odd quantities can test the perturbative predictions for the imaginary part of scattering amplitudes; i.e. the scattering phase or the strong phase.

## pQCD prediction in hard processes

 Naïve-T-odd asymmetries in hard processes have been calculated in e<sup>+</sup>e<sup>-</sup>→3jets, Semi-Inclusive DIS, DY and top decay processes.



• So far, no experimental measurements for these asymmetries

## W+jet events, Top radiative decay at the LHC

#### W+jet:

- huge cross section ~ 10nb
- simple event topology
- phases from initial-state int.

#### Top-quark radiative decay:

- large cross section ~ 0.2nb
- additional jet radiation
- complicated event topology
- phases from final-state int.



## W+jet: Lepton Angular Distributions

$$\frac{d^4\sigma}{dq_T^2 d\cos\theta d\cos\theta d\phi} = F_1(1+\cos^2\theta) + F_2(1-3\cos\theta^2) + F_3\sin2\theta\cos\phi$$

$$+ F_4\sin^2\theta\cos2\phi + F_5\cos\theta + F_6\sin\theta\cos\phi$$
P-even
$$+ F_7\sin\theta\sin\phi + F_8\sin2\theta\sin\phi + F_9\sin^2\theta\sin2\phi$$
P-odd

 $q_T$ : transverse momentum of W boson

 $\cos \hat{\theta}$ : scattering angle

 $\theta$ ,  $\phi$ : lepton decay angles in W-rest frame

 $F_{1-9}(q_T,\cos\widehat{\theta})$  : structure functions

LO (Born): Chaichian et.al.('82) P-even: F<sub>1~6</sub>

LO (one-loop): Hagiwara, Hikasa, Kai('84)

NLO: not known yet

NLO (one-loop): Mirkes('92)

P-odd : F<sub>7~9</sub>

## W+jet: pQCD prediction at one-loop level

Hagiwara, Hikasa, Kai ('84)

Annihilation subprocess :  $q \bar q' o W g$ 

Partonic asymmetry at the LHC

$$A_i(q_T^2,\cos\hat{\theta}) = F_i\,/\,F_1 \ \ {\rm for} \ \ i=7,8,9$$
 
$$pp,\ \sqrt{S} = 8 \ \ {\rm TeV} \ \ {\rm with} \ {\rm CTEQ6M}$$

in Collins-Soper frame  $A_8$ 

$$A_7 \sim 10-15\%$$
,  
 $A_8 \sim a \text{ few } \%$ ,  
 $A_9 \sim a \text{ few } \%$ 



## W+jet: Measurement at the Tevatron and LHC

- In W+jet events, some of P-even distributions have been measured by CDF in Run-I.
- $\rightarrow$  agree with pQCD (NLO) within errors.
- At the LHC, only polar angular distributions has been measured, so far.
- → only helicity fraction of W-boson.
   no azimuthal angle,
   no interference of different helicity states.
- P-odd distributions have not been measured at all.

Frederix, Hagiwara, Yamada, HY(14)

• The aim of our study is to revisit the P-odd distribution in W+jet events at the LHC, and demonstrate its observability by using the NLO MC generator and fast detector simulation.





## Simulation study beyond the Born level

Frederix, Hagiwara, Yamada, HY(14)

• (NLO) Event Generator which handle the parity-odd distributions

MG5\_aMC@NLO (automatic, multipurpose)

One-loop level ME, NLO matching with PS (NLO for P-even, LO for P-odd)

LO MC (handmade, W+jet only)

LO for all  $F_{1-9}$ , LO matching with PS

P-even:  $F_{1-6} \propto \alpha_s \sigma_0 + \alpha_s^2 \sigma_1 + \cdots$ P-odd:  $F_{7-9} \propto \alpha_s \sigma_0 + \alpha_s^2 \sigma_0 + \cdots$ Born one-loop

→ HERWIG/PYTHIA + PGS/Delphes to study QCD ISR/FSR and detector resolution effects.

#### Event selection and extraction of the P-odd term

• Huge W( $\rightarrow$ IV)+jet cross section : O(1) nb

• Selection cuts:  $p_T^{\mu} >$  25 GeV,  $|\eta_{\mu}| <$  2.5 : 0.94 nb  $E_T >$  25 GeV : 0.75 nb

 $Q_T > 30 \text{ GeV}$  : 0.29 nb

 $M_T^W >$  60 GeV : 0.29 nb

 $p_T^j >$  30 GeV,  $|\eta_i| <$  5 : 0.13 nb



- $0.13 \text{ nb} \times 20 \text{ fb}^{-1} = 2.6 \times 10^6 \text{ events}$
- Background : QCD,  $Z \to \mu^+\mu^-$ , < 10% level  $W^+ \to \tau^+\nu_{\tau}$

Extraction of the F<sub>7</sub> distribution

 $\sin\theta\sin\phi = p_\ell^\perp/(m_W/2)$ 

lepton momentum component perpendicular to the scattering plane

→ left-right asymmetry wrt. scatt. plane

cos  $\widehat{\theta}$  suffered from the two-fold ambiguity. Instead, we propose to use  $\Delta \eta = \eta_\ell - \eta_{iet}$ 

## Results: MG5\_aMC@NLO vs. LOMC

•  $\Delta \eta$  (= $\eta_l$ - $\eta_i$ ) distributions [detector sim. by using HERWIG/PGS]



- ullet P-odd cross-section unchanged ullet consistent with the order of calculation.
- Reduction of the asymmetry in MG5\_aMC@NLO,
   due to the K-factor (~ 1.5 2) in the denominator (total cross-section).
- Scale uncertainty is largely reduced in MG5\_aMC@NLO ( NLO matching with PS! )
- (Small) detector smearing by misidentifying hard jet from ISR/FSR jets.

## Prospects for the naïve-T-odd asymmetries

- At the LHC,
  - W plus 1-jet event is promising!
     one-loop analytic calc. is known, experimentally simple.
  - Top-quark radiative decay:

```
one-loop analytic calc. also known, experimentally challenging (boosted top, subjet structure,,,)
```

• W plus 2-jets / Z / γ ,,, :

analytic calc. not known, but now we have MG5\_aMC@NLO!! measurements at the 14TeV run will be interesting.

- At the ILC,
  - Top-quark radiative decay can be measured in a clean environment.
  - Z → 3-jets decay handedness may be measured, e.g. at the Giga-Z factory.

## Summary

- Naïve-T-odd asymmetry emerges from the absorptive part of scattering amplitudes. In hard processes, it can be predicted by perturbation calculation, and comparison with experimental measurement would be an interesting test.
- We study the naïve-T-odd (P-odd) asymmetry in W+jet production at the LHC, using the NLO-EG MG5\_aMC@NLO:
   QCD PS and detector effects for the measurement are estimated, and theoretical uncertainties by scale variation and due to the lack of NLO P-odd distributions are argued.
- If observed, it will be a first confirmation of the imaginary part of scattering amplitudes at the one-loop level.

## Measurement at collider experiments

• Events display in the transverse plane

(p<sup>y</sup>)<sub>l</sub> is invariant under the Lorentz Boost from lab. frame to the W-rest frame

$$p_{\ell}^{\perp} = p_{y}^{\ell}(W \operatorname{rest-frame})$$

$$= \frac{m_{W}}{2} \sin \theta \sin \phi$$

Missing  $E_T$  resolution may be crucial for the accuracy of  $(p^l)_v$  measurement



## One-loop calculation

Origin of the imaginary part in the loop (Feynman) integrals;

$$\begin{cases} \log(x - i\epsilon) \to -i\pi \theta(-x) & \frac{1}{\Delta - i\epsilon} \to P\frac{1}{\Delta} + i\pi \delta(\Delta) \\ \text{Li}_2(x - i\epsilon) \to i\pi \ln(x) \theta(x - 1) & \text{in the integrand} \end{cases}$$

#### Methods of calculation;

- 1. Analytic calculation by standard Feynman parameter integrals
- 2. Express by loop scalar functions and use the fortran code "FF"

  Passarino, Veltman ('79), Oldenborgh ('91)
- IR divergences are regulated by using gluon mass scheme or DR.
- Check of the results by the gauge invariance

## T-odd asymmetry in hadron physics

(P-even, pure QCD effect)

- Large T-odd asymmetries have been observed in hadron spin physics
  - 1.  $\Lambda$ -polarization  $\sim \langle \vec{p}_p \times \vec{p}_\Lambda \cdot \vec{s}_\Lambda \rangle$  in  $p+N \to \Lambda^\uparrow + X$
  - 2.  $A_N$  in  $p + p^{\uparrow} \to \pi + X$   $A_N = \frac{\sigma^{\uparrow} \sigma^{\downarrow}}{\sigma^{\uparrow} + \sigma^{\downarrow}} \sim \langle \vec{p}_p \times \vec{s}_p \cdot \vec{p}_{\pi} \rangle$
- STSA needs chirality-flip amplitude, in addition to the complex phase
  - Non-perturbative QCD effects inside nucleon
    - 1. Transverse-momentum-dependent PDF
    - 2. Higher-twist effects





#### $W \to \ell \nu$ selection

- Single lepton triggers with high efficiency
- \*  $p_{T,I} > 20~GeV$   $|\eta_e| < 2.47, |\eta_\mu| < 2.4$ (elec. excl. calo crack) isolated leptons  $E_{\rm T}^{\rm miss} > 25~GeV$  $m_T > 40~GeV$
- \* QCD from data fitting  $E_T^{miss}$  (e) and studying control regions in  $iso E_T^{miss}$  plane ( $\mu$ )
- ★ 131 140 K candidates with 7 – 9% background



### W polarization at high $p_T$

- \* Helicity fractions,  $f_0$  and  $f_L f_R$ , measured from angular distribution in transverse plane:  $cos\theta_{2D} = \vec{p_T^{\ell*}} \cdot \vec{p_T^{W}} / |\vec{p_T^{\ell*}}| |\vec{p_T^{W}}|$ 
  - $\checkmark$  Measurements done for  $35 < p_T^W < 50 \ GeV$  and  $p_T^W > 50 \ GeV$  regions



- \*  $f_L f_R$  measured with 12–14% syst. uncertainty, dominated by hadronic recoil scale uncertainty (statistical uncertainty in 6–8% range)
- \* Results compared to NLO QCD predictions from MC@NLO, POWHEG MCs

## Parity-odd asymmetries

$$A_i(q_T^2, \cos \hat{\theta}) = F_i / F_1 \text{ for } i = 7, 8, 9$$

#### **Tevatron**

 $p\bar{p}$ ,  $\sqrt{S}=1.96~{\rm TeV}$  with CTEQ6M

 $A_7 \sim 5-15\%$ ,  $A_8 \sim a \text{ few to } 5\%$ ,  $A_9 \sim a \text{ few } \%$ 



 $\sin \theta \sin \phi$ 

 $\sin 2\theta \sin \phi$ 

 $\sin^2\theta\sin2\phi$ 

#### Measurement at Tevatron

• Left-right asymmetry  $\longleftrightarrow A_7$ 

$$A_{LR}(\Delta\eta,q_T)=[N(p_y^\ell>0)-N(p_y^\ell<0)]/N_{sum}$$
 ~5% at large  $\Delta\eta$ 

more than 5σ deviation from zero-asymmetry is expected

• sign(sin2 $\phi$ ) asymmetry  $\longleftrightarrow A_9$ 

$$A_Q = [1 - 2 + 3 - 4]/N_{sum}$$
  $\sim -0.9\% \pm 0.5 \ (2\sigma)$  (combining all  $\Delta\eta$  and  $q_T$ )

Hagiwara, Hikasa, HY (06)





 $\nu_{\varrho}$ 

## Top-quark radiative decay at one-loop level

• Extra radiation is required to define the decay plane

• One-loop diagrams for the absorptive part:



• Lepton angular distributions:

$$\frac{d\Gamma}{dz_1 dz_2 d\cos\theta d\phi} = K \sum_{\lambda,\lambda'} H_{\lambda\lambda'}(z_1, z_2) L_{\lambda\lambda'}(\theta, \phi)$$

$$= K \Big[ F_1(1 + \cos^2\theta) + F_2(1 - 3\cos^2\theta) + F_3\sin 2\theta\cos\phi + F_4\sin^2\theta\cos 2\phi + F_5\cos\theta + F_6\sin\theta\cos\phi + F_7\sin\theta\sin\phi + F_8\sin 2\theta\sin\phi + F_9\sin^2\theta\sin 2\phi \Big]$$

