Comparison of test beam data from imaging calorimeters with GEANT4 simulations

Eva Sicking (CERN)
on behalf of the CALICE collaboration

July 3, 2014
ICHEP 2014, Valencia, Spain
Prototypes for highly granular calorimeters

- **Tracker**: Silicon ECAL
- **ECAL**: Scintillator ECAL
- **HCAL**: Analog HCAL, Semi-Digital HCAL, Digital HCAL
- **Muon system**: RPCs

Readout
- Silicon PIN diodes
- Scint. strips + Silicon Photo Multipliers
- RPCs (µMegas)
- RPCs (GEMs)

Granularity (mm³)
- 10 × 10 × 0.5
- 45 × 5 × 3
- 30 × 30 × 5
- 10 × 10 × 1.2
- 10 × 10 × 1.15

Absorber
- W
- W
- Fe or W
- Fe
- Fe or W

Layer × thickness (mm)
- 10 × 1.4 + 10 × 2.8 + 10 × 4.2
- 30 × 3.5
- Fe: 38 × 21.4
- W: 38 × 10
- 48 × 20
- Fe: 38 × 20
- W: 39 × 10
CALICE test beam experiments

- Test beam experiments in 2006-2012 at DESY, CERN, FNAL
- Prototypes of up to $\sim 1\,\text{m}^3$, $\sim 2\,\text{m}^3$ including Tail Catcher
Geant4 Physics Lists

- Hadronic interactions in Geant4 based on phenomenological models
 - String parton models: QGS(P), FTF(P)
 - Parametrised models: LEP, HEP
 - Cascade models: BERT, BIC
 - Precompound model

- Models are combined in “physics lists”

- Model extension HP
 - Data driven High Precision neutron package
 - Assumed to be important for neutron rich absorbers
Validation of Detector Simulation using Electron Data
Si-W-ECAL: Electron linearity and resolution

- Electromagnetic processes well understood
- Cross check detector calibration
- Understand requirements for details needed in simulation

Electrons at 6-45 GeV
Reconstructed energy of data and simulation agree within 1 %

Linearity: \(E_{\text{rec}} \) versus \(E_{\text{beam}} \), agreement with linear dependence within 1 %

Energy resolution: \(\sigma_E \approx a \sqrt{E} \oplus b \rightarrow 16.6\% \sqrt{E} \oplus 1.1\% \), 17.0\%

\[\sqrt{E} \oplus 0.8\% \]

30 GeV e−
Linearity Energy resolution

Geant4 version 9.3

Eva Sicking (CERN)
Geant4 Comparison to CALICE Data
July 3, 2014
Si-W-ECAL: Electron linearity and resolution

- Electromagnetic processes well understood
- Cross check detector calibration
- Understand requirements for details needed in simulation

Electrons at 6-45 GeV

Reconstructed energy of data and simulation agree within 1%

Linearity: \(E_{\text{rec}} \) versus \(E_{\text{beam}} \), agreement with linear dependence within 1%

Energy resolution: \(\frac{\sigma_E}{E} \approx \frac{a}{\sqrt{E}} + b \rightarrow \frac{16.6\%}{\sqrt{E}} \oplus 1.1\%, \frac{17.0\%}{\sqrt{E}} \oplus 0.8\% \)
Sc-Fe-AHCAL: Positron linearity and resolution

- Positrons at 10-50 GeV
- Reconstructed energy of data and simulation agree within 3%
- Agreement with linearity within 3% (1% up to 30 GeV)
- Energy resolution $\frac{21.9\%}{\sqrt{E}} \oplus 1.0\%$, $\frac{21.5\%}{\sqrt{E}} \oplus 0.7\%$
- Corrections are under control, e.g. saturation

2011 JINST 6 P04003
Geant4 Comparison to CALICE Data
July 3, 2014 7 / 22
Sc-W-AHCAL: Positron linearity and resolution 1-6 GeV

- Positrons at 1-6 GeV
- Reconstructed energy in data and simulation agree within 2%, resolution within 5%
- Stochastic term of energy resolution $a = 29.6\%$, $a = 29.2\%$
 → Coarser sampling in W than in Fe
Geant4 Comparison to Hadron Data
Si-W-ECAL: Fraction of interacting pions

- Pions at 2-10 GeV and 8-80 GeV in Si-W-ECAL
- Highly granular calorimeter allows to study shower shape and substructure

Study fraction of interacting pions in Si-W-ECAL of $\sim 1\lambda_l$ ($24X_0$)
- Models agree with data at ≤ 4 GeV
- At 6-10 GeV, the models overestimate the interacting fraction by 4%

Energy deposition (a.u.)

x direction (pad number)

z direction (layer number)

Incoming pion energy [GeV]

Interaction fraction

Models agree with data at ≤ 4 GeV
At 6-10 GeV, the models overestimate the interacting fraction by 4%
Si-W-ECAL: Longitudinal and radial energy profile

- Models deposit too much energy near the interaction layer
- Effect increasing with beam momentum
- Radial energy profiles best described by QBBC
- FTFP models deposit energy too close to shower axis, QGSP_BERT shows opposite effect
- Hit distributions (longitudinal and radial) are well reproduced by MC
Sc-Fe-AHCAL: Pion linearity

- Pions at 8-100 GeV

FTFP_BERT performance varies with Geant4 version

- Lists including BERT-model agree within 4% at low energies, within 10% at high energies
Sc-Fe-AHCAL: Analogue vs (semi-)digital readout

- Comparison of 3 readout options using same prototype and dataset of pions at 10-80 GeV
 - Analogue: Measure energy deposition
 - Digital: Count number of hits above threshold N_{hits}
 - Semi-digital: Count number of hits above thresholds N_1, N_2, and N_3

Geant4 version 9.6.p01

- Agreement between data and FTFP_BERT in digital and semi-digital read-out within ±10%
- Digital MC resolution shifted to lower energies

Eva Sicking (CERN)
Sc-Fe-AHCAL: Analogue vs (semi-)digital readout

- Comparison of 3 readout options using same prototype and dataset of pions at 10-80 GeV
 - Analogue: Measure energy deposition
 - Digital: Count number of hits above threshold N_{hits}
 - Semi-digital: Count number of hits above thresholds N_1, N_2, and N_3

Geant4 version 9.6.p01

- Agreement between data and FTFP_BERT in digital and semi-digital read-out within ±10%
- Digital MC resolution shifted to lower energies
Sc-Fe-AHCAL: Parametrisation of hadron shower profiles

- Logitudinal and radial shower shape for pions and protons at 10-80 GeV
- Fit of longitudinal shower shape using

$$\Delta E = A \cdot \left\{ \frac{f \cdot \exp(-\frac{z}{\beta_{\text{short}}})}{\beta_{\text{short}} \cdot \Gamma(\alpha_{\text{short}})} \cdot \left(\frac{z}{\beta_{\text{short}}} \right)^{\alpha_{\text{short}}-1} + \frac{(1-f) \cdot \exp(-\frac{z}{\beta_{\text{long}}})}{\beta_{\text{long}} \cdot \Gamma(\alpha_{\text{long}})} \cdot \left(\frac{z}{\beta_{\text{long}}} \right)^{\alpha_{\text{long}}-1} \right\}$$
Sc-Fe-AHCAL: Parametrisation of hadron shower profiles

- Logitudinal and radial shower shape for pions and protons at 10-80 GeV

- Fit of longitudinal shower shape using

\[
\Delta E = A \cdot \left\{ f \cdot \frac{\exp\left(-\frac{z}{\beta_{short}}\right)}{\Gamma(\alpha_{short})} \cdot \left(\frac{z}{\beta_{short}}\right)^{\alpha_{short}-1} + \frac{(1-f) \cdot \exp\left(-\frac{z}{\beta_{long}}\right)}{\Gamma(\alpha_{long})} \cdot \left(\frac{z}{\beta_{long}}\right)^{\alpha_{long}-1} \right\}
\]

- MC overestimates fraction of short component except FTFP_BERT for protons

- Tail parameters well described by MC
Sc-W-AHCAL: Pion, proton and kaon response

- Pion, protons and kaons at 3-10 GeV
- Good agreement between data and QGSP_BERT_HP and FTFP_BERT_HP
- QGSP_BIC_HP underestimates data slightly (within uncertainties)
Sc-W-AHCAL: Proton shower shapes

- **QGSP_BERT_HP** and **QGSP_BIC_HP** overestimate energy deposition in first part of shower
- Radial profile: Models overestimate energy density in shower core

Geant4 version 9.5.p01

Eva Sicking (CERN)
Sc-Fe-AHCAL: Substructure of hadronic shower

- Pions at 10-80 GeV in AHCAL
- Identify track segments of minimum-ionising particles within hadron showers
- Best agreement between data and QGSP_BERT and FTFP_BERT
- Agreement crucial for simulation studies of Particle Flow Analysis
Fe-SDHCAL: Substructure of hadronic shower

- Pions at 10-80 GeV in SDHCAL
- Identify track segments of minimum-ionising particles within showers
- Best agreement between data and QGSP_BERT and FTFP_BERT
- Agreement crucial for simulation studies of Particle Flow Analysis
T3B: Time structure of hadronic showers

- Time structure of hadronic showers
 - Delayed component due to nuclear deexcitation, neutron propagation etc.

- Pions in **tungsten** show more late hit time entries than **steel**

- Reference measurement of **muons**

T3B: Tungsten Timing Test Beam
- Scintillator cells placed behind HCAL
- Read out $3000 \times 800 \text{ ps} \approx 2 \mu \text{s}$ to sample the full shower development

CAN-038 arXiv:1404.6454
T3B: Time distribution

- High precision (HP) neutron tracking improves agreement for tungsten
- Late energy deposits are more important in the outer regions of a shower
Summary

- Test beam experiments with ECAL and HCAL prototypes
 - Test of novel technologies in large-scale calorimeters
 - Demonstration of detector calibration capabilities
 - Characterisation of prototypes: linearity, resolution
 - Measurement of particle shower evolution

- Validate detector simulations using electromagnetic processes
 - Overall good agreement between data and detector simulation

- Test models of hadronic nuclear interactions
 - Geant4 models reproduce hadronic data within few percent
 - High precision (HP) neutron tracking improves tungsten HCAL simulation
 - Novel test of shower substructure and time structure

- Stay tuned for more CALICE results, e.g. HCALs with gaseous readout
Backup
CALICE

- CAlorimetry for LInear Collider Experiments
- International R&D collaboration, ~330 members
- Development of imaging calorimeters for experiments at high-energy e^+e^- colliders

- Build and test calorimeter prototypes
- Demonstrate that the required performance of the calorimeter system can be achieved
- Compare results to MC predictions
Calorimeters for future lepton colliders

- **Jet energy resolution goal**
 - 5-3.5% for 50 GeV to 1 TeV jets

- **Possible solution**
 - Particle Flow Analysis
 - Low mass tracker for charged particles
 - High granularity ECAL for photons
 - High granularity HCAL for neutral hadrons

- CALICE builds and tests prototypes of highly granular calorimeters
- Demonstration that the required performance of the calorimeter system can be achieved
- Comparison of results to MC predictions
International Linear Collider (ILC)

- Superconducting RF cavities
- Gradient: 32 MV/m
- Energy: ~ 500 GeV (upgradable to 1 TeV)
- Luminosity: few 10^{34} cm$^{-2}$s$^{-1}$
Compact Linear Collider (CLIC)

- 2-beam acceleration scheme
- Operated at room temperature
- Gradient: 100 MV/m
- Energy: \(\sim 375 \text{ GeV} \) to 3 TeV
- Luminosity: few \(10^{34} \text{ cm}^{-2} \text{s}^{-1} \)
Detector simulations: Example Sc-W-AHCAL

- **Geant4 detector simulation**
 - Full setup including beam instrumentation
 - Particle generation using gun simulation
 - Beam position, direction and spread corresponding to data runs

- **Digitisation**
 - Realistic detector granularity
 - Optical cross talk between neighbouring scintillator tiles
 - Birk’s law
 - Simulated readout electronics: signal shaping time, noise
 - Saturation effects