Updated three-neutrino oscillation parameters from global fits

(Based on arXiv:1405.7540)

Mariam Tórtola
IFIC, Universitat de València/CSIC

37th International Conference on High Energy Physics
3th July 2014, Valencia.
3-neutrino oscillation formalism

- Neutrino mixing is described by 3 mixing angles and 1 Dirac (+2 Majorana) CP phase:

\[
U = \begin{pmatrix}
 c_{12}c_{13} & s_{12}c_{13} & s_{13}e^{-i\delta} \\
 -s_{12}c_{23} - c_{12}s_{23}s_{13}e^{i\delta} & c_{12}c_{23} - s_{12}s_{23}s_{13}e^{i\delta} & s_{23}c_{13} \\
 s_{12}s_{23} - c_{12}c_{23}s_{13}e^{i\delta} & -s_{23}c_{12} - s_{12}c_{23}s_{23}e^{i\delta} & c_{23}c_{13}
\end{pmatrix}
\]

- two possible mass orderings:

- neutrino oscillation probability

\[
P(\nu_\alpha \rightarrow \nu_\beta) = \delta_{\alpha\beta} - 4 \sum_{i \neq j} Re(U^*_{\alpha i} U_{\alpha j} U_{\beta i}^* U_{\beta j}^*) \sin^2 \left(\frac{\Delta m_{ij}^2 L}{4E} \right) + 2 \sum_{i \neq j} Im(U^*_{\alpha i} U_{\alpha j} U_{\beta i}^* U_{\beta j}^*) \sin \left(\frac{\Delta m_{ij}^2 L}{2E} \right)
\]
Experimental data and methodology

Data included

- **solar**: Homestake, Gallex/GNO, SAGE, Borexino, SNO, Super-K
- **reactor**: KamLAND, Double Chooz, RENO, Daya Bay
- **atmospheric**: Super-K
- **LBL**: K2K, MINOS, T2K

Methodology

Oscillation probabilities + MC simulation of experiment

- Experiments
- Expected data
- Statistical analysis
- Allowed regions in \((\theta_{ij}, \Delta m^2_{ij}, \delta)\)
Solar and atmospheric parameters

- θ_{12} determined by solar data
- Δm^2_{21} dominated by KamLAND.
- mismatch between Δm^2_{21} from solar and KamLAND

- θ_{23} best constrained by T2K
- Δm^2_{31} dominated by MINOS
- SK-atm data in agreement with LBL
 * T2K prefers maximal θ_{23}
 * MINOS prefers non-maximal θ_{23}
The determination of θ_{13} is totally dominated by Daya Bay.

$$\sin^2 \theta_{13} = 0.0234 \pm 0.0020 \quad \text{NH}$$
$$\sin^2 \theta_{13} = 0.0240 \pm 0.0019 \quad \text{IH}$$
The octant of the atmospheric angle

- Appearance probability at LBL:

 \[P_{\mu e} \propto \sin^2 \theta_{23} \sin^2(2\theta_{13}) \]

 \[\rightarrow \text{degeneracy in } \theta_{13}-\theta_{23} \text{ plane} \]

- Reactor data fix \(\theta_{13} \) and break the degeneracy moving \(\theta_{23} \) to the 2nd octant.

- SK-atm data do not change this tendency and \(\theta_{23} \) remains in the 2nd octant in global fit
Sensitivity to the CP phase

→ mismatch between θ_{13} value measured by reactors and preferred LBL-value for certain values of δ.

→ significant rejection for values of $\delta \sim 0.5\pi$ emerges from the global fit: disfavoured at 1.8σ (2.5σ) for NH (IH).

→ best fit values:

$\delta = (1.34^{+0.64}_{-0.38})\pi$ (NH)

$\delta = (1.48^{+0.34}_{-0.32})\pi$ (IH)
Update after Neutrino-2014 Conference

- **Double Chooz**: 467.9 days [arXiv:1406.7763]

 rate + shape analysis: \(\sin^2 2\theta_{13} = 0.090^{+0.032}_{-0.029} \) \(33\% \) precision \((36\%) \)

- **RENO**: 800 days [talk by Seon-Hee Seo]

 rate-only analysis: \(\sin^2 2\theta_{13} = 0.101 \pm 0.008 \text{ (stat)} \pm 0.010 \text{ (syst)} \) \(13\% \) uncert. \((18\%) \)

- **Daya Bay**: 621 days of data \((6\text{AD} + 8\text{AD}) \) [Talk by Chao Zhang]

 rate + shape analysis: \(\sin^2 2\theta_{13} = 0.084 \pm 0.005 \) \(6\% \) precision \((9\%) \)

 \(\rightarrow \) lower best fit value

- **new reactor component at \(\sim 5 \text{ MeV} \)** observed in RENO \((3.6\sigma) \) and Double Chooz \((3.0\sigma) \), correlated with reactor thermal power.

 \(\rightarrow \) origin of the excess?

 \(\rightarrow \) not very relevant for \(\theta_{13} \) measurement, based on Far/Near comparison
Impact of new data over the global fit

Before ν-2014
(arXiv:1405.7540)

<table>
<thead>
<tr>
<th>Model</th>
<th>θ_{13}</th>
</tr>
</thead>
<tbody>
<tr>
<td>NH</td>
<td>0.023 ± 0.002</td>
</tr>
<tr>
<td>IH</td>
<td>0.024 ± 0.002</td>
</tr>
</tbody>
</table>

After ν-2014
(this update)

<table>
<thead>
<tr>
<th>Model</th>
<th>θ_{13}</th>
</tr>
</thead>
<tbody>
<tr>
<td>NH</td>
<td>0.0200 ± 0.0014</td>
</tr>
<tr>
<td>IH</td>
<td>$0.0216 \pm 0.0010 - 0.0012$</td>
</tr>
</tbody>
</table>

$\sim 8\%$ $\sim 5\%$

→ new Daya Bay data favour lower value of θ_{13} and increase precision
Impact of new data over the global fit

Before ν-2014
(arXiv:1405.7540)

θ_{23} octant

After ν-2014
(this update)

- NH: local minimum at 1st octant with $\Delta \chi^2 = 0.28$
- IH: 1st octant values allowed with $\Delta \chi^2 > 1.5$

\rightarrow lower θ_{13} value favours slightly larger values of θ_{23} (2nd octant)
Impact of new data over the global fit

Before \(v\)-2014
\(\text{(arXiv:1405.7540)}\)

- Best fit: \(\delta \sim 1.5\pi\) for NH and IH
- NH: \(\delta \sim 0.5\pi\) disfavoured at 1.8\(\sigma\)
- IH: \(\delta \sim 0.5\pi\) disfavoured at 2.5\(\sigma\)

After \(v\)-2014
\(\text{(this update)}\)

- Best fit: \(\delta \sim 1.5\pi\) for NH and IH
- NH: \(\delta \sim 0.5\pi\) disfavoured at 2.2\(\sigma\)
- IH: \(\delta \sim 0.5\pi\) disfavoured at 2.8\(\sigma\)

→ lower \(\theta_{13}\) value increases the tension with LBL data, enhancing the rejection against \(\delta \sim 0.5\pi\)
Updated global fit summary

- No indication for correct mass ordering: \(\Delta \chi^2 (\text{IH} - \text{NH}) = -0.6 \)
Summary

* Recent T2K data provide the most sensitive measurement of θ_{23}

* Our global fit shows a preference for $\theta_{23} > \pi/4$, although for NH a local minimum appears in $\sin^2\theta_{23} = 0.47$ with $\Delta \chi^2 = 0.71$. For IH, solutions in the first octant appear only at 1.4σ.

* θ_{13} determination improved thanks to last results from reactor experiments, mainly Daya Bay.

* An enhanced sensitivity to the CP violation phase emerges from the complementarity between accelerator and reactor data (increased after Neutrino-2014).

* No sensitivity to neutrino mass hierarchy.