Searches for Pseudoscalar Higgs Bosons using the ATLAS Detector

Eric Feng (ANL)

on behalf of the ATLAS Collaboration

ICHEP, Valencia
July 2-9, 2014
• Discovery and measurements of a SM-like Higgs boson have “completed” the Standard Model, but still insufficient to fully describe nature
• Supersymmetry provides a possible solution to hierarchy problem and dark matter
 • *Pseudoscalar Higgs bosons appear in variants of SUSY*
• Direct searches for pseudoscalar Higgs bosons
 • MSSM: Searches for A→ττ, μμ (heavy A)
 • NMSSM: Searches for a→μμ; h→aa→4γ (light a)
• Constraints from measurements of observed Higgs boson
 • Probe of Higgs CP in h→ZZ→4l
 • Coupling measurements with all channels → MSSM, 2HDM
• **Searches for pseudoscalar Higgs bosons are important probe of new, fundamental physics at the TeV scale!**
Pseudoscalars in extended Higgs sectors

<table>
<thead>
<tr>
<th>Model</th>
<th>Higgs sector</th>
<th>CP-odd</th>
<th>SUSY partners</th>
</tr>
</thead>
<tbody>
<tr>
<td>2HDM: Two-Higgs-Doublet-Model</td>
<td>Two doublets \rightarrow 5 Higgs bosons (h, H, H^+, H^-, A)</td>
<td>A (heavy)</td>
<td>None</td>
</tr>
<tr>
<td>MSSM: Minimal Supersymmetric Standard Model</td>
<td>Two doublets \rightarrow 5 Higgs bosons (h, H, H^+, H^-, A)</td>
<td>A (heavy)</td>
<td>+ sparticles</td>
</tr>
<tr>
<td>NMSSM: Next-to-minimal Supersymmetric Standard Model</td>
<td>Two doublets, one singlet \rightarrow 7 Higgs bosons $(h_1, h_2, h_3, H^+, H^-, a_1, a_2)$</td>
<td>a_1, a_2 (light)</td>
<td>+ sparticles</td>
</tr>
</tbody>
</table>
Probe of observed Higgs charge-parity

- Observed Higgs boson may have a pseudoscalar component
- BDT trained to use Z masses and lepton angles in $h\rightarrow ZZ\rightarrow 4l$ decays in 7-8 TeV data
- 0^- hypothesis excluded at 97.8% CL in favor of 0^+
 - However CP admixtures still compatible with data
 - At 14 TeV, CP-odd fraction $f_{g4} < 0.18 \ (0.05)$ exp. with 300 \ (3000 fb-1)
 - ATL-PHYS-PUB-2013-013
MSSM: Production modes of A

- Simplest low-energy SUSY model with rich & simple Higgs phenomenology
 - A has odd CP, while other Higgs bosons are CP-even
 - Two parameters: m_A and $\tan \beta = \nu_2/\nu_1$
 - Dominant production modes for A are gluon fusion and associated bbA
 - bbA can be significantly enhanced at large $\tan \beta \rightarrow$ tag b-jets

![Diagram of production modes](image)

July 5, 2014
E. Feng (ANL) - Searches for Pseudoscalar Higgs Bosons with ATLAS
MSSM: Decay modes of A

- Branching ratios for pseudoscalar Higgs
- Dominant decay modes to b-quarks and taus, particularly at large $\tan\beta$
- $\text{BR}(A \rightarrow \tau\tau) \sim 10\%$
 - Better sensitivity at low mass than $A \rightarrow b\bar{b}$ due to large QCD backgrounds
 - Categorized in turn by decay mode of each τ
- $\text{BR}(A \rightarrow \mu\mu) \sim 0.04\%$ but clean signature
Search for A→ττ

- 4.7 fb⁻¹ of 7 TeV data
 - Categorize by final state depending on \(\tau \) decay
 - Triggers:
 - \(\tau_e \tau_\mu (\tau_{lep} \tau_{had}) \): Single or di-lepton (single lepton only)
 - \(\tau_{had} \tau_{had} \): Two hadronic taus
 - Samples split by b-tag or b-veto to distinguish bbA vs. ggF production
 - Discriminating variable, \(m_{\tau\tau} \), estimated via Missing Mass Calculator (MMC)
 - Assume missing \(E_T \) due entirely to neutrinos
 - Scan over angles between neutrinos and tau decay products
 - Pick most likely invariant mass of \(\tau\tau \) pair
 - Dominant irreducible background from Drell Yan: \(Z/\gamma^*\rightarrow\tau\tau \)
 - Embed simulated taus into \(Z/\gamma^*\rightarrow\mu\mu \) data & normalize to simulation
 - Multi-jet background:
 - ABCD method for charge correlation & lepton isolation
 - Systematic uncertainties:
 - Data-driven backgrounds
 - Cross-sections and acceptance for MC samples, including theory
 - Trigger & ID for electrons, muons, and hadronic taus
 - Energy/momentum scale and resolution of objects, particularly calorimeter
A→τ_eτ_μ

- **Dilepton**: Exactly one electron and one opposite-charge muon, with \(m_{e\mu} > 30 \text{ GeV} \)
 - Electron (muon) \(p_T > 15 \ (10) \text{ GeV} \) for eμ trigger, or 24 (20) GeV for single lepton trigger
- **Low MET and large \(\Delta\phi(e,\mu) \)** required to reject \(tt\bar{t} \) & diboson backgrounds
- **Low \(H_T \)** required to reduce jet-related backgrounds

Data 2011

- \(m_A = 150 \text{ GeV} \)
- \(\tan \beta = 20 \)

ATLAS

- \(\sqrt{s} = 7 \text{ TeV} \)
- \(\int L \ dt = 4.7 \text{ fb}^{-1} \)

b-tag

- Events / 30 GeV

b-veto

- Events / 10 GeV

July 5, 2014

E. Feng (ANL) - Searches for Pseudoscalar Higgs Bosons with ATLAS
Semi-leptonic channel:
- Single isolated electron (muon) with pT > 25 (20 GeV)
- Hadronic tau required to have opposite charge as lepton
- Demand $m_T(l, \text{MET}) < 30$ GeV to avoid W+jets and ttbar
- Top backgrounds smaller here due to one lepton
A→τ_{had}τ_{had}

- **Fully hadronic channel:**
 - Two hadronic taus, one “tight” and one “medium”
 - Opposite charge and p_T>45 & 30 GeV
- Veto on electrons (muons) with p_T > 15 (10) GeV
- MET > 25 GeV for neutrinos and suppress QCD multijets
 - Dominant background coming from multijets, then DY

ATLAS

- √s = 7 TeV, ∫L dt = 4.7 fb⁻¹
- b-tag

JHEP 02 (2013) 095

- Data 2011
- m_χ = 150 GeV, tan β = 20
- Multi-jet
- Z → ττ
- W → τν
- Top
- Bkg. uncertainty

ATLAS

- √s = 7 TeV, ∫L dt = 4.7 fb⁻¹
- b-veto

July 5, 2014

E. Feng (ANL) - Searches for Pseudoscalar Higgs Bosons with ATLAS
Search for $A \rightarrow \mu\mu$

- Two isolated muons with $p_T > 20$ & 15 GeV
- MET < 45 GeV to reduce $tt\bar{t}$ background
- Samples with/without tagged b-jet for bbA vs. ggF and to reject Drell-Yan
- Smooth backgrounds expected to be dominated by $Z \rightarrow \mu\mu$ and $tt\bar{t}$ (left)
- Actual analysis fits smooth background in sidebands above Z pole (right)

\[m_{\mu\mu} \text{ [GeV]} \]

\[\int L \, dt = 4.8 \, fb^{-1} \]
\[\sqrt{s} = 7 \, TeV \]
• No significant excess observed in any \(\tau \tau \) nor \(\mu \mu \) decay mode
 • Upper limits on \(\sigma \times \text{BR} \) at \(\sqrt{s}=7 \text{ TeV} \) for decays into \(\tau \tau \) and \(\mu \mu \) (left)
• Translated into upper limits on \(\tan \beta = \nu_2 / \nu_1 \) as a function of \(m_A \) (right)
 • Dilepton: Sensitive at low mass where hadronic backgrounds are large
 • Semi-leptonic: Sensitive at wide range of masses due to lepton
 • Hadronic: Sensitive at high mass where hadronic backgrounds decrease
• Tightest constraint is \(\tan \beta < 9.3 \) for \(m_A = 130 \text{ GeV} \) @ 95% CL
Search for $Z'\rightarrow\tau\tau$ at high mass

- Search for high-mass Z' decaying via hadronic taus with 20 fb$^{-1}$ of 8 TeV data
 - $\sigma(Z') \cdot BR(Z'\rightarrow\tau\tau) < 0.1$ pb at $m_{Z'} = 500$ GeV
- Search for pseudoscalar Higgs $m_A < 500$ GeV similar, includes single-tau trigger
 - Kinematic acceptance and efficiencies specific for A instead of Z'
 - Work on-going to analyze 8 TeV data -- stay tuned for upcoming results!
A→μμ prospects at 14 TeV

- Sensitivity projections at 14 TeV
- Regions with 5σ discovery potential
- Large improvement wrt 7-8 TeV, particularly at large m_A
 - $\tan \beta < 37$ (23) for $m_A=500$ GeV at 300 (3000) fb$^{-1}$ with A→μμ alone
- Expected exclusions even larger

![Graph showing $\tan \beta$ vs m_A](image1)

![Graph showing m_A vs $\tan \beta$](image2)
Simplified MSSM Constraints from Higgs Couplings

- Measured light Higgs couplings via combination of all channels in 7-8 TeV:
 - vector bosons (W/Z)
 - up-type fermions (top)
 - down-type fermions (b, tau)
- Higgs mass measured as: $m_h \sim 125.5$ GeV
- In MSSM, light Higgs mass m_h is a function of m_A and $\tan \beta$: $m_h^2 = m_Z^2 \cos^2(2\beta) + \delta(m_A, \tan \beta, \ldots)$
- Couplings measurements used to constrain m_A and $\tan \beta$:
 - For $2 < \tan \beta < 10$, $m_A > 400$ GeV
 - Observed limits a bit tighter than expected for SM due to high $h \rightarrow \gamma\gamma$ and $h \rightarrow ZZ$ rates
 - Lower limit on $\tan \beta$ for given m_A is complementary to upper limit from direct searches
2HDM Type II Constraints from Higgs Couplings

7-8 TeV

ATLAS-CONF-2014-010

2HDM Type II

Obs. 95% CL

\(\sqrt{s} = 7 \text{ TeV}: \int L dt = 4.6-4.8 \text{ fb}^{-1} \)

Best fit

\(\sqrt{s} = 8 \text{ TeV}: \int L dt = 20.3 \text{ fb}^{-1} \)

Exp. 95% CL

Combined \(h \rightarrow \gamma\gamma, ZZ^*, WW^* \)

SM

\(h \rightarrow \tau\tau, b\bar{b} \)

- 7-8 TeV measurements of Higgs couplings to vector bosons, up-type & down-type fermions via combination of all channels

- Use to set limits on 2HDM Type II (left)

→ Limits on pseudoscalar couplings (scale as \(\cot \beta \) for top quark, \(\tan \beta \) for b-quark & \(\tau \))

- Doesn’t depend on mixing angle \(\alpha \) between \(h,H \) at tree level

- Higher sensitivity at 14 TeV (right)

14 TeV

ATL-PHYS-PUB-2013-015

- 14 TeV

\(\sqrt{s} = 14 \text{ TeV} \)

Expected 95% CL Limit on 2HDM Type II

\(\int L dt = 300 \text{ fb}^{-1}: \) All unc.

\(\int L dt = 300 \text{ fb}^{-1}: \) No theory unc.

\(\int L dt = 3000 \text{ fb}^{-1}: \) All unc.

\(\int L dt = 3000 \text{ fb}^{-1}: \) No theory unc.

SM
NMSSM: Search for $a \rightarrow \mu \mu$

- NMSSM: Add scalar singlet to MSSM
 - 2 CP-odd Higgs bosons: a_1, a_2 (typically light)
- Search for inclusive $a \rightarrow \mu \mu$ with 39 pb$^{-1}$ at 7 TeV
 - Active analysis with 8 TeV data
- Require two muons triggered with $p_T > 4$ GeV
- Likelihood ratio using vertex fit and isolation
 - PDFs derived using sidebands
- No significant excess wrt background-only prediction with Υ states
 - Upper limit on rate of 0.1-1.6 fb

July 5, 2014
E. Feng (ANL) - Searches for Pseudoscalar Higgs Bosons with ATLAS
• Search for two collimated (unresolved) pairs of photons using 4.9 fb$^{-1}$ of 7 TeV data
• Two photons with $p_T > 40, 25$ GeV
 • Loosened shower shape requirements sensitive to internal structure of EM shower
• Categories of kinematics not used to be more model-independent
 • Thus $h \rightarrow \gamma \gamma$ contamination is small
• Smooth backgrounds (dominated by QCD diphotons) fitted with sidebands
• No excess observed
 • $\sigma \times \text{BR} < 0.15$ pb for $m_a = 100$ MeV at $\sqrt{s} = 7$ TeV
Conclusions

• Searches performed for pseudoscalar Higgs bosons well-motivated by various scenarios (MSSM, NMSSM, 2HDM)

• No evidence found in direct searches with 7 TeV data
 • Indirect constraints from Higgs CP and coupling measurements (8 TeV data) also consistent with SM

• Although large regions of MSSM parameter space excluded, significant SUSY regions remain compatible with observed Higgs boson!
 • Direct searches on-going with 8 TeV data, which have greater sensitivity
 • Discovery potential will be further enhanced with 14 TeV data

• Stay tuned for further results!
ADDITIONAL INFORMATION
More information (I)

More information (II)

 https://cds.cern.ch/record/1611190

 https://cds.cern.ch/record/1336749

 https://cds.cern.ch/record/1460391
Tau reconstruction and ID

Tau jet reconstruction

- Tau: \(\tau^+ \)\(\tau^- \)\(\nu_\tau \)
- QCD jet: \(\pi^- \)\(\pi^0 \)\(\pi^+ \)

Seed from aK_{\tau} jets in calorimeter (\(\Delta R = 0 \)).
Associated tracks in \(\Delta R = 0.2 \) of jet axis

Tau jet identification

3-prong tau BDT discriminant against jets

1-prong tau-ID performance against jets

Inverse Background Efficiency

- 3-prong, \(p_T > 20 \text{ GeV} \)
- 1-prong, \(40 \text{ GeV} < p_T < 100 \text{ GeV} \)

Tau jet ID efficiencies

- ATLAS Preliminary Simulation
- multi-prong, Medium

Tau jets in DATA

- ATLAS Preliminary
- \(L_{dd} = 1.55 \text{ fb}^{-1}, \sqrt{s} = 7 \text{ TeV} \)

- Data 2011
- \(\gamma^*Z \rightarrow \tau^+\tau^- \)
- Multijet
- \(W \rightarrow \mu\nu \)
- \(W \rightarrow \tau\nu \)
- \(\gamma^*Z \rightarrow \mu\mu \)
- t\bar{t}
- Diboson

- Events/2.5 GeV

- \(m_{\Delta \nu}(\tau^+\tau^-) \) [GeV]
Di-tau invariant mass reconstruction

Effective (visible or transverse) mass

\[m_{\tau\tau} = \sqrt{\left(p_{\text{vis1}} + p_{\text{vis2}} + p_{\text{miss}} \right)^2} \]
\[p_{\text{miss}} = (E^\text{miss}_T, E^\text{miss}_{T_x}, E^\text{miss}_{T_y}, 0) \]

Collinear approximation

\[m_{\tau\tau} = \frac{m_{\text{vis}}}{(x_1, x_2)^{1/2}} \]
\[x_1, 2 = \frac{p_{\text{vis1,2}}}{p_{\text{vis1,2}} + p_{\text{miss1,2}}} \]

\[E^T_x = p_{\text{vis}}, \sin \theta_{\text{vis}}, \cos \phi_{\text{vis}} + p_{\text{miss}} \sin \theta_{\text{miss}}, \cos \phi_{\text{miss}} \]
\[E^T_y = p_{\text{vis}}, \sin \theta_{\text{vis}}, \sin \phi_{\text{vis}} + p_{\text{miss}} \sin \theta_{\text{miss}}, \sin \phi_{\text{miss}} \]

MMC

(Missing Mass Calculator)

Event by event \(M_{TT} \) scanning over \(\nu \) directions according to MC PDFs

\[M^2_{\tau\tau} = m_{\text{vis}}^2 + m_{\text{miss}}^2 + 2\sqrt{p_{\text{vis}}^2 + m_{\text{vis}}^2}\sqrt{p_{\text{miss}}^2 + m_{\text{miss}}^2} - 2p_{\text{vis}}p_{\text{miss}} \cos \Delta \theta_{\text{vis,miss}} \]

A. Eilagin et al., NIM A 654 (2011) 481
Backgrounds to $A\rightarrow\tau\tau$

- $Z/\gamma^*\rightarrow\tau\tau$ background estimated from data (all channels)
 - Select $Z/\gamma^*\rightarrow\mu\mu$ and replace the muon response with a tau response from MC
 - Apply selection to the embedded sample
 - Check agreement with $Z/\gamma^*\rightarrow\tau\tau$ simulation

- QCD multijet backgrounds estimated from data (all channels)
 - Data-driven with ABCD method
 - $e\mu$ and lh channels: use SS/OS & lepton isolation
 - hh channel: use SS/OS & tau ID severity

- Other backgrounds
 - Top (b-tag samples) from data CR
 - ll and lh channels
 - W+jets also from data CR
 - lh channel

\[n_A = n_B \times \frac{n_C}{n_D} \]
• Event selection
 • Trigger: Single e (20 or 22 GeV) or μ (18 GeV), or combined e+μ (10 GeV and 6 GeV)
 • Exactly one e and opposite signed μ with E_T and p_T on trigger efficiency plateau, $m_{e\mu} > 30$ GeV
 • Events split by jet flavor: 1 b-tag and 0 b-tag
 • Reduce ttbar and diboson backgrounds: MET + $p_T^e + p_T^\mu < 125$ GeV (b-tag) or < 150 GeV (b-veto)
 • $\Delta \phi (e,\mu) > 2.0$ (b-tag) or > 1.6 (b-veto)
 • $\Sigma \cos \Delta \phi (\text{MET, l}) > -0.2$ (b-tag) or > -0.4 (b-veto)
 • b-tag: scalar sum of jets, $H_T < 100$ GeV

• Background estimation
 • Multi-jets: ABCD estimate using e/μ isolation requirements and charge correlation
 • ttbar: Extrapolated from control regions using 2 b-tagged sample
• Event selection
 • Trigger: Single e (20 or 22 GeV) or μ (18 GeV)
 • Exactly one e with $p_T > 25$ GeV or one μ with $p_T > 20$ GeV
 • One τ_{had} with $E_T > 20$ GeV
 • $m_T (l, MET) < 30$ GeV
 • Split by b-tagging:
 • b-tagged sample: highest E_T jet is b-tagged and has $20 < E_T < 50$ GeV
 • b-vetoed sample: highest E_T jet *not* b-tagged and MET > 20 GeV
• Background estimation
 • Multi-jets: ABCD estimate uses e/μ isolation requirements and charge correlation
 • ttbar: Derive correction factor for simulation using 2-btag selection
A→τ\text{had}τ\text{had}

- Event selection
 - Trigger: Di-τ\text{had} (29 GeV and 20 GeV)
 - Two opposite-sign trigger-matched τ\text{had} candidates. No e nor μ
 - Leading τ\text{had}: E_T > 45 GeV, tight ID
 - 2\text{nd} leading τ\text{had}: E_T > 30 GeV, medium ID
 - MET > 25 GeV
 - Split by b-tagging:
 - b-tagged sample: Highest E_T jet is b-tagged and has 20<E_T<50 GeV
 - b-vetoed sample: Highest E_T jet not b-tagged and MET > 60 GeV
- Background estimation
 - Multi-jets: ABCD estimate uses τ ID requirements and opposite sign/same sign events
 - Tau modeling: Correct simulation using Z→τ\text{had}τ_μ (trigger/ID) and W→μν+jets (jet fake rate)
- Background modeled using smooth functions
- Signal modeled using Breit-Wigner convolved with Gaussian resolution, together with Landau function for low-mass tail
 - BW width fixed to FeynHiggs prediction
Two Higgs Doublet Models (2HDMs)

- Additional Higgs doublet could appear in SUSY or other BSM theories (hierarchy problem, dark matter)
 - Results in 5 Higgs bosons
- Four types (I, II, III, IV) of two Higgs-doublet models satisfy Glashow-Weinberg condition
 - No tree-level flavor changing neutral currents
- Light Higgs couplings are function of two parameters:
 - Mixing angle α between two CP-even states h, H
 - Ratio of vacuum expectation values of 2 doublets: $\tan(\beta)=v_2/v_1$
- Assume that observed Higgs boson is the light Higgs, h

<table>
<thead>
<tr>
<th>Coupling strength</th>
<th>Type I $\sin(\beta - \alpha)$</th>
<th>Type II $\sin(\beta - \alpha)$</th>
<th>Type III $\sin(\beta - \alpha)$</th>
<th>Type IV $\sin(\beta - \alpha)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>κ_V</td>
<td>$\sin(\beta - \alpha)$</td>
<td>$\sin(\beta - \alpha)$</td>
<td>$\sin(\beta - \alpha)$</td>
<td>$\sin(\beta - \alpha)$</td>
</tr>
<tr>
<td>κ_u</td>
<td>$\cos(\alpha)/\sin(\beta)$</td>
<td>$\cos(\alpha)/\sin(\beta)$</td>
<td>$\cos(\alpha)/\sin(\beta)$</td>
<td>$\cos(\alpha)/\sin(\beta)$</td>
</tr>
<tr>
<td>κ_d</td>
<td>$\cos(\alpha)/\sin(\beta)$</td>
<td>$-\sin(\alpha)/\cos(\beta)$</td>
<td>$\cos(\alpha)/\sin(\beta)$</td>
<td>$-\sin(\alpha)/\cos(\beta)$</td>
</tr>
<tr>
<td>κ_l</td>
<td>$\cos(\alpha)/\sin(\beta)$</td>
<td>$-\sin(\alpha)/\cos(\beta)$</td>
<td>$-\sin(\alpha)/\cos(\beta)$</td>
<td>$\cos(\alpha)/\sin(\beta)$</td>
</tr>
</tbody>
</table>
Prospects for A->Zh at 14 TeV

- Search for A->Zh->llbb
 - Example signal for m_A=360 GeV (top right)
- Expected limit with 14 TeV data (left)
 - Analysis of 8 TeV on-going now – stay tuned!
- Translated into limits on m_A & $\cos(\beta-\alpha)$ in Two-Higgs-Doublet-Model (2HDM) Type II i.e. “MSSM-like” Higgs sector (bottom right)