Measurement of cross sections and couplings of the Higgs boson in the WW decay channel using the ATLAS detector

corinne mills
(University of Edinburgh)
On behalf of the ATLAS collaboration

ICHEDP
4 July 2014
Higgs boson production

- Higgs boson couplings measurement essential SM consistency test
 → Search for rare production modes
- Continue search for additional states at high mass in parallel

![Graphical representation of Higgs boson production modes](image)

- **Gluon-gluon fusion (“ggF”)**
- **Vector boson fusion (“VBF”)**
- **Associated production (“VH”)**

![Graphical representation of Higgs boson production modes](image)
H → WW → ℓνℓν

WW channel well-suited to exploring rare production modes and searching at high-mass

Large branching ratio and good S/B from clean dilepton signature

<table>
<thead>
<tr>
<th>channel</th>
<th>σ(pp→H) @ 8 TeV</th>
<th>BR (H→VV)</th>
<th>BR(VV→4l)</th>
<th>evt. yield in 20 fb⁻¹</th>
<th>S/B (approx.)</th>
</tr>
</thead>
<tbody>
<tr>
<td>H → γγ</td>
<td>22.3 pb</td>
<td>0.0023</td>
<td>-</td>
<td>1000</td>
<td>0.03 – 0.5</td>
</tr>
<tr>
<td>H → ZZ → 4l</td>
<td>22.3 pb</td>
<td>0.026</td>
<td>0.0011</td>
<td>130</td>
<td>2</td>
</tr>
<tr>
<td>H → WW → ℓνℓν</td>
<td>0.22</td>
<td>0.047</td>
<td>4700</td>
<td>0.1 – 0.4</td>
<td></td>
</tr>
</tbody>
</table>

4 July 2014
c. mills (Edinburgh)
The WW signature

Final state
2 charged leptons + 2 neutrinos
(lvjj important as well for high m_H searches)

Jets depend on production mode
Spin zero resonance

Can’t go bump hunting like $\gamma\gamma$ or $ZZ \to 4l$ channels

Transverse mass M_T: invariant mass without p_z of vs \rightarrow signal discriminant with edge at m_H

$$M_T^2 = \left(E_T^{\ell\ell} + E_T^{\text{miss}} \right)^2 - \left(\vec{p}_T^{\ell\ell} + \vec{E}_T^{\text{miss}} \right)^2$$

$$\left(E_T^{\ell\ell} \right)^2 = \left(\vec{p}_T^{\ell\ell} \right)^2 + \left(m_{\ell\ell} \right)^2$$
Backgrounds

WW: quasi-irreducible

W+jets: fake leptons

Z/γ*: no νs

4 July 2014
c. mills (Edinburgh)
Analysis strategy

Starting point: dilepton data after missing transverse energy cut

1. Categorize events by number of jets, number of leptons, lepton flavors
 → Separate by production mode and background composition

2. Cut away backgrounds and normalize to control regions enriched in a particular background but orthogonal to the signal region
WW – quasi-irreducible

WW is dominant ggF background

7.4% **total uncertainty in 0-jet**

→ 1.6% from theory

![Graph](image)

1) Normalize to data

2) subtract other contributions

\[N_{SR} = \left(\frac{N_{SR}^{MC}}{N_{CR}^{MC}} \right) (N_{data}^{CR} - N_{other}^{CR}) \]

3) extrapolate using simulation

Dilepton invariant mass \(m_{ll} \) **is a good signal discriminant** because the spin-0 of the Higgs boson, combined with V-A structure of W decay correlates lepton directions.
W+X backgrounds

• "Same-sign validation region"
• WZ, Wγ*, Wγ estimated from theory + MC simulation
 → 14% total uncertainty in 0-jet category
 → Z, γ, and γ* produce lepton with same or opposite charge as W with equal probability

W+jets: isolation / ID on 2nd lepton separates SR and CR
• Transfer factor for extrapolation to SR from dijet data
• Stringent lepton ID / isolation → "fake" leptons, particularly muons, are often true leptons from heavy-flavor hadron decays
 → 40-45% uncertainty on fake factor from sample composition

μ± νs + → "ℓ"
The raw data

0 jet

1 jet

2 jet (VBF)

VBF signal

4 July 2014 c. mills (Edinburgh)
lvlv signal strength

Combined $WW \rightarrow lvlv$ signal strength $\mu = \sigma / \sigma_{SM}$ (2011+2012, all Njet):

$\mu = 0.99 \pm 0.21 \text{ (stat.)} \pm 0.21 \text{ (sys)}$

VBF vs. ggF: virtual contributions for ggF only
Sensitive to BSM particles in the loops

$\mu_{ggF} = 0.8 \pm 0.2 \text{ (stat.)} \pm 0.3 \text{ (syst.)}$

$\mu_{VBF} = 1.7 \pm 0.7 \text{ (stat.)} \pm 0.4 \text{ (syst.)}$
Cross section measurement

\[\mu = \sigma / \sigma_{SM} \]

<table>
<thead>
<tr>
<th>Category</th>
<th>Source</th>
<th>Uncertainty, up (%)</th>
<th>Uncertainty, down (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Statistical</td>
<td>Observed data</td>
<td>+21</td>
<td>-21</td>
</tr>
<tr>
<td>Theoretical</td>
<td>Signal yield ((\sigma \cdot B))</td>
<td>+12</td>
<td>-9</td>
</tr>
<tr>
<td>Theoretical</td>
<td>WW normalisation</td>
<td>+12</td>
<td>-12</td>
</tr>
<tr>
<td>Experimental</td>
<td>Objects and DY estimation</td>
<td>+9</td>
<td>-8</td>
</tr>
<tr>
<td>Theoretical</td>
<td>Signal acceptance</td>
<td>+9</td>
<td>-7</td>
</tr>
<tr>
<td>Experimental</td>
<td>MC statistics</td>
<td>+7</td>
<td>-7</td>
</tr>
<tr>
<td>Experimental</td>
<td>W+ jets fake factor</td>
<td>+5</td>
<td>-5</td>
</tr>
<tr>
<td>Theoretical</td>
<td>Backgrounds, excluding WW</td>
<td>+5</td>
<td>-4</td>
</tr>
<tr>
<td>Luminosity</td>
<td>Integrated luminosity</td>
<td>+4</td>
<td>-4</td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td>+32</td>
<td>-29</td>
</tr>
</tbody>
</table>

- \(\mu = \sigma / \sigma_{SM} \); measured cross section \(\sigma = \mu \times \sigma_{SM} \)
- Remove uncertainties on signal cross section but not acceptance

\[(\sigma \cdot \text{Br}(H \rightarrow WW))_{\text{obs}, 8 \text{TeV}} = 6.0 \pm 1.1 \text{ (stat.)} \pm 0.8 \text{ (theo.)} \pm 0.7 \text{ (expt.)} \pm 0.3 \text{ (lumi.)} \text{ pb} \]

\[= 6.0 \pm 1.6 \text{ pb} \]

\[(\sigma \cdot \text{Br}(H \rightarrow WW))_{\text{exp}, 8 \text{TeV}} = 4.8 \pm 0.7 \text{ pb} \]
Clean 3-lepton (WH) and 4-lepton (ZH) signatures, additional info on HWW vertex (complement to VBF mode)

WH: Z-enriched category
(OS same-flavor pair)

- Minimum ΔR between any two leptons: same physics as $\Delta \phi(ll)$ and m_{ll}

WH: Z-depleted category
(no OS same-flavor pair)

- 4-lepton: 2 OS pairs, one with $|m_{ll} - m_Z| < 10$ GeV
- 1 event expected, $S/B \sim 1/5$
- \rightarrow zero observed

!!ATLAS Preliminary!!

信号区域

$\sqrt{s} = 8$ TeV, $\mathcal{L} = 20.7$ fb$^{-1}$

3-lepton (Z-enriched)

SR: $S/B \sim 1/18$

4-lepton:

- 2 OS pairs, one with $|m_{ll} - m_Z| < 10$ GeV
- 1 event expected, $S/B \sim 1/5$
- \rightarrow zero observed
VH, H \rightarrow WW Results

cross section limits (@95% confidence) and significance of excess over BG for $m_H=125$ GeV

<table>
<thead>
<tr>
<th></th>
<th>expected</th>
<th>observed</th>
<th>significance</th>
</tr>
</thead>
<tbody>
<tr>
<td>WH (8 TeV)</td>
<td>$5.2 \times \sigma_{SM}$</td>
<td>$10 \times \sigma_{SM}$</td>
<td>2.3 σ ($p_0 = 1.2%$)</td>
</tr>
<tr>
<td>ZH (8 TeV)</td>
<td>$9.6 \times \sigma_{SM}$</td>
<td>$14 \times \sigma_{SM}$</td>
<td>1.5 σ ($p_0 = 7.2%$)</td>
</tr>
<tr>
<td>Combined (7+8 TeV)</td>
<td>$3.6 \times \sigma_{SM}$</td>
<td>$7.2 \times \sigma_{SM}$</td>
<td>2.0 σ ($p_0 = 2.1%$)</td>
</tr>
</tbody>
</table>

- No SM sensitivity yet but observed limit higher than expected one
The Road Ahead

- WW was essential to discovery, combined rate measurement, and connecting the new particle to electroweak symmetry breaking
- Now: Is this the **SM Higgs boson or something more interesting?**
 - **WW channel can address this from multiple angles**
 - + Good S/B and large branching ratio
 - - Challenging backgrounds in ggF and VBF
 - **ggF and VBF modes key inputs to coupling measurement combinations**
 - **Search for rarer production modes (WH, VH, ttH...)**
 - **Properties measurements (starting from spin)**
 - **Search at high mass for additional states**
- 13 TeV run (2015-2017) will bring much-needed data and stronger statements in response to all of these questions
backup
Spin measurement

- Test spin hypothesis with kinematic variables through a BDT
 → No direct measurement of angles (cannot reconstruct rest frame)
- Use ggF eμ zero-jet category → highest sensitivity
 → Then loosen requirements on spin-sensitive variables: \(m_\parallel < 80 \text{ GeV}, \ p_T^\parallel > 20, \ \Delta\phi(\parallel) < 2.8 \)
Spin measurement

- Train two BDTs
 - One for SM signal (0+) against background
 - Second for alternate spin/parity hypothesis (2+, 1+, 1-) against background
- Fit data to discriminate hypotheses
- 2+ excluded at \geq 95\% CL by WW
Drell Yan (Z/γ^*)

Measure missing transverse energy only with tracks: more robust against extra interactions (pileup)

\[\vec{E}_{T}^{\text{miss}} = - \sum_{\text{objects } i} \vec{p}_{T}^{\text{object}} \]

- Left: additional rejection after initial E_{T}^{miss} requirement
 → First inclusion of $ee+\mu\mu$ channels in 2012 WW analysis
The ATLAS Detector

Inner Detector (tracking):
- Pixels (silicon)
- SCT (silicon strips)
- TRT (straw tubes/ionization)

Electromagnetic calorimeter:
- Liquid Argon (LAr) with lead absorber

Hadronic calorimeter (jets, hadrons):
- Steel absorber + scintillator
- LAr with copper/tungsten absorber

Muon Detectors: large radii for precise momentum measurement
- Precision: Drift tubes (MDT) and Cathode Strip Chambers (CSC)
- Trigger: Resistive Plate Chamber (RPC) and Thin Gap Chamber (TGC)
Top background to VBF

≥ 2-jet data after a b-veto: still top-dominated

Reject further background with unique VBF signature: energetic well-separated jets

These cuts reject additional 95% of total background but cost 70% of VBF signal
Estimating top in VBF phase space

<table>
<thead>
<tr>
<th>Uncertainties on top normalization</th>
</tr>
</thead>
<tbody>
<tr>
<td>stat.</td>
</tr>
<tr>
<td>10%</td>
</tr>
</tbody>
</table>

- Normalize to control region (like WW)
 → Apply all VBF jet cuts, extrapolate from \(b\)-tagged \(\rightarrow\) \(b\)-vetoed

\[N_{SR} = \left(\frac{N_{SR}^{MC}}{N_{CR}^{MC}} \right) \left(N_{CR}^{data} - N_{CR}^{other} \right) \]
Full systematic uncertainties

<table>
<thead>
<tr>
<th>Source</th>
<th>Signal processes (%)</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>$N_{\text{jet}} = 0$</td>
<td>$N_{\text{jet}} = 1$</td>
<td>$N_{\text{jet}} \geq 2$</td>
<td>$N_{\text{jet}} = 0$</td>
<td>$N_{\text{jet}} = 1$</td>
<td>$N_{\text{jet}} \geq 2$</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Theoretical uncertainties</td>
<td></td>
</tr>
<tr>
<td>QCD scale for ggF signal for $N_{\text{jet}} \geq 0$</td>
<td>13</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>QCD scale for ggF signal for $N_{\text{jet}} \geq 1$</td>
<td>10</td>
<td>27</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>QCD scale for ggF signal for $N_{\text{jet}} \geq 2$</td>
<td>-</td>
<td>15</td>
<td>4</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>QCD scale for ggF signal for $N_{\text{jet}} \geq 3$</td>
<td>-</td>
<td>-</td>
<td>4</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>Parton shower and UE model (signal only)</td>
<td>3</td>
<td>10</td>
<td>5</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>PDF model</td>
<td>8</td>
<td>7</td>
<td>3</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>$H \rightarrow WW$ branching ratio</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>QCD scale (acceptance)</td>
<td>4</td>
<td>4</td>
<td>3</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>WW normalisation</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>1</td>
<td>2</td>
<td>4</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>Experimental uncertainties</td>
<td></td>
</tr>
<tr>
<td>Jet energy scale and resolution</td>
<td>5</td>
<td>2</td>
<td>6</td>
<td>2</td>
<td>3</td>
<td>7</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>b-tagging efficiency</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>7</td>
<td>2</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>f_{recoil} efficiency</td>
<td>1</td>
<td>1</td>
<td>-</td>
<td>4</td>
<td>2</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
</tbody>
</table>
\(\frac{Z/\gamma^* \to \tau\tau \to l\nu l\nu}{\text{Reduce uncertainties by normalizing dominant background to data in signal-depleted “control regions” (CR)}} \)

ATLAS Preliminary

\(\ell s = 8 \text{ TeV}, \int \mathcal{L}t = 20.7 \text{ fb}^{-1} \)

\(H \to \text{WW}^{(*)} \to \ell^+\ell^-\nu\bar{\nu} + 0 \text{ jets} \)

- Data
- SM (sys @ stat)
- WW
- WZ/ZZ/W\gamma
- t\bar{t}
- Single Top
- Z+jets
- W+jets
- H [125 GeV]

\[N_{SR} = \left(\frac{N_{SR}^{MC}}{N_{CR}^{MC}} \right) \left(N_{CR}^{\text{data}} - N_{CR}^{\text{other}} \right) \]

Azimuthal lepton opening angle

\(\Delta \phi(ll) \) works well for the same reasons
1-jet analysis: top and the b-veto

control region: b-jet tag

signal region: b-jet veto

Extrapolate from tag to veto

Experimental systematics dominate (b-tag efficiency calibration)
High-mass / BSM WW searches

- High-mass searches now explicitly BSM
- Include SM-like, narrow-width, 2HDM signal models

Combine ggF and VBF channels for SM-like hypothesis (assume production cross section ratio unchanged from SM)

2HDM: general BSM Higgs model, neural-net based search

heavy H masses up to ~200 GeV excluded (model + mixing angle dependent)

ATLAS Preliminary

$H \rightarrow WW \rightarrow e\nu\mu\nu$, SM width

$\sqrt{s} = 8$ TeV, $L_{\text{int}} = 20.7$ fb$^{-1}$

95% CL Limit on $\sigma \times \text{BR}$

$\sigma_{\text{th}} \times \text{BR}$

$\pm 1 \sigma$

$\pm 2 \sigma$

Events / 0.07

ATLAS Preliminary

$\int L \, dt = 13.0$ fb$^{-1}$, $\sqrt{s}=8$ TeV

$H \rightarrow WW \rightarrow e\nu\mu\nu + 0$ jets

NN $@240$ GeV

Data

- SM Higgs $m_h=125$ GeV
- W+jets
- Z/γ^*+jets
- $t\bar{t}$/Wt/tq/t\bar{t}5
- WW/WZ/ZZ/WW/γ/WW*

SM (sys \oplus stat)

χ^2-prob.: 76%