
Theoretical study of delayed 
neutron emission (and decay heat)

Hiroyuki Koura
Advance Science Research Center
Japan Atomic Energy Agency

The 2nd BRIKEN Workshop, July 30-31, 2013 (Wako, Japan)

Collaborate with:
S. Chiba (Tokyo Inst. Tech.,TIT), T. Yoshida (TIT) and T. Tachibana (Waseda Univ. )

13年7月31日水曜日



Theoretical study of delayed 
neutron emission (and decay heat)

Hiroyuki Koura
Advance Science Research Center
Japan Atomic Energy Agency

The 2nd BRIKEN Workshop, July 30-31, 2013 (Wako, Japan)

- 3.5 year project of estimating and delayed 
neutron emission decay heat for U, Pu and 

minor actinides - 

Collaborate with:
S. Chiba (Tokyo Inst. Tech.,TIT), T. Yoshida (TIT) and T. Tachibana (Waseda Univ. )

13年7月31日水曜日



140

120

100

80

60

40

20

Pr
ot

on
 (A

to
m

ic
) n

um
be

r Z
 

24022020018016014012010080604020
Neutron number N

278[113]165

α-decay dominant
β-decay dom.
SF dom.
p-emission dom.
Proton-drip line

         by KTUY formula
β-stable nuclei

         by KTUY formula
known nucl.(2000)

N=28 N=50 N=82 N=126 N=184 N=228

Z=28

Z=50

Z=82

Z=114

Z=126

132Sn

208Pb
235U

298[114]184

an example of r-process path

294Ds184

Understanding global properties of nuclei

Nuclear mass region

‣ (Extremely) Superheavy：Decay modes, Structure of superheavy double magic nuclei 298[114] 
and its neighboring, and beyond

‣ Proton-rich：N=126 neutron-deficient nuclei (Unknown peninsula) : enhancement of 
existence due to the closed shell

‣ Neutron-rich：Change of closed shell,  Fission in the superheavy, r-process nucleosynthesis

2

Superheavy

Proton-rich

Neutron-rich

Prediction of decay modes (KTUY mass model) 
H. K and T. Tachibana, B. Phys.Soc. Jpn. 60, 717 (2005)

13年7月31日水曜日



140

120

100

80

60

40

20

Pr
ot

on
 (A

to
m

ic
) n

um
be

r Z
 

24022020018016014012010080604020
Neutron number N

278[113]165

α-decay dominant
β-decay dom.
SF dom.
p-emission dom.
Proton-drip line

         by KTUY formula
β-stable nuclei

         by KTUY formula
known nucl.(2000)

N=28 N=50 N=82 N=126 N=184 N=228

Z=28

Z=50

Z=82

Z=114

Z=126

132Sn

208Pb
235U

298[114]184

an example of r-process path

294Ds184

Understanding global properties of nuclei

Nuclear mass region

‣ (Extremely) Superheavy：Decay modes, Structure of superheavy double magic nuclei 298[114] 
and its neighboring, and beyond

‣ Proton-rich：N=126 neutron-deficient nuclei (Unknown peninsula) : enhancement of 
existence due to the closed shell

‣ Neutron-rich：Change of closed shell,  Fission in the superheavy, r-process nucleosynthesis

2

Superheavy

Proton-rich

Neutron-rich

Prediction of decay modes (KTUY mass model) 
H. K and T. Tachibana, B. Phys.Soc. Jpn. 60, 717 (2005)

13年7月31日水曜日



140

120

100

80

60

40

20

Pr
ot

on
 (A

to
m

ic
) n

um
be

r Z
 

24022020018016014012010080604020
Neutron number N

278[113]165

α-decay dominant
β-decay dom.
SF dom.
p-emission dom.
Proton-drip line

         by KTUY formula
β-stable nuclei

         by KTUY formula
known nucl.(2000)

N=28 N=50 N=82 N=126 N=184 N=228

Z=28

Z=50

Z=82

Z=114

Z=126

132Sn

208Pb
235U

298[114]184

an example of r-process path

294Ds184

Understanding global properties of nuclei

Nuclear mass region

‣ (Extremely) Superheavy：Decay modes, Structure of superheavy double magic nuclei 298[114] 
and its neighboring, and beyond

‣ Proton-rich：N=126 neutron-deficient nuclei (Unknown peninsula) : enhancement of 
existence due to the closed shell

‣ Neutron-rich：Change of closed shell,  Fission in the superheavy, r-process nucleosynthesis

2

Superheavy

Proton-rich

Neutron-rich

Prediction of decay modes (KTUY mass model) 
H. K and T. Tachibana, B. Phys.Soc. Jpn. 60, 717 (2005)

13年7月31日水曜日



140

120

100

80

60

40

20

Pr
ot

on
 (A

to
m

ic
) n

um
be

r Z
 

24022020018016014012010080604020
Neutron number N

278[113]165

α-decay dominant
β-decay dom.
SF dom.
p-emission dom.
Proton-drip line

         by KTUY formula
β-stable nuclei

         by KTUY formula
known nucl.(2000)

N=28 N=50 N=82 N=126 N=184 N=228

Z=28

Z=50

Z=82

Z=114

Z=126

132Sn

208Pb
235U

298[114]184

an example of r-process path

294Ds184

Understanding global properties of nuclei

Nuclear mass region

‣ (Extremely) Superheavy：Decay modes, Structure of superheavy double magic nuclei 298[114] 
and its neighboring, and beyond

‣ Proton-rich：N=126 neutron-deficient nuclei (Unknown peninsula) : enhancement of 
existence due to the closed shell

‣ Neutron-rich：Change of closed shell,  Fission in the superheavy, r-process nucleosynthesis

2

Superheavy

Proton-rich

Neutron-rich

Prediction of decay modes (KTUY mass model) 
H. K and T. Tachibana, B. Phys.Soc. Jpn. 60, 717 (2005)

10-6
 

10-4
 

10-2
 

100
 

102
 

104
 

106
 

108
 

1010

Ab
un

da
nc

e 
of

 n
uc

lid
es

 (S
i=

10
6 )

240220200180160140120100806040200

Mass number A

Anders&Grevesse89  R-process only
 R-dom. with small s
 R-S comparative
 S-process only
 S-dom. with small r
 P-process only
 p-r-s comparative
 Other

130Te(R)

1H

56Fe

138Ba(S) 195Pt(R)
238U

235U

232Th

Solar abundances
13年7月31日水曜日



Understanding global properties of nuclei

Nuclear mass region

‣ (Extremely) Superheavy：Decay modes, Structure of superheavy double magic nuclei 298[114] 
and its neighboring, and beyond

‣ Proton-rich：N=126 neutron-deficient nuclei (Unknown peninsula) : enhancement of 
existence due to the closed shell

‣ Neutron-rich：Change of closed shell,  Fission in the superheavy, r-process nucleosynthesis

2

Superheavy

Proton-rich

Neutron-rich

Prediction of decay modes (KTUY mass model) 
H. K and T. Tachibana, B. Phys.Soc. Jpn. 60, 717 (2005)

140

120

100

80

60

40

20

Pr
ot

on
 (A

to
m

ic
) n

um
be

r Z
 

24022020018016014012010080604020
Neutron number N

278[113]165
α-decay dominant
β-decay dom.
SF dom.
p-emission dom.
Proton-drip line

         by KTUY formula
β-stable nuclei

         by KTUY formula
known nucl.(2000)

N=28 N=50 N=82 N=126 N=184 N=228

Z=28

Z=50

Z=82

Z=114

Z=126

132Sn

208Pb

235U

298[114]184

an example of r-process path

294Ds184

10-18 
10-16 
10-14 
10-12 
10-10 
10-8 
10-6 
10-4 
10-2

Fission Yield of 235
U+n

th

10-6
 

10-4
 

10-2
 

100
 

102
 

104
 

106
 

108
 

1010

Ab
un

da
nc

e 
of

 n
uc

lid
es

 (S
i=

10
6 )

240220200180160140120100806040200

Mass number A

Anders&Grevesse89  R-process only
 R-dom. with small s
 R-S comparative
 S-process only
 S-dom. with small r
 P-process only
 p-r-s comparative
 Other

130Te(R)

1H

56Fe

138Ba(S) 195Pt(R)
238U

235U

232Th

Solar abundances
13年7月31日水曜日



Understanding global properties of nuclei

Nuclear mass region

‣ (Extremely) Superheavy：Decay modes, Structure of superheavy double magic nuclei 298[114] 
and its neighboring, and beyond

‣ Proton-rich：N=126 neutron-deficient nuclei (Unknown peninsula) : enhancement of 
existence due to the closed shell

‣ Neutron-rich：Change of closed shell,  Fission in the superheavy, r-process nucleosynthesis

2

Superheavy

Proton-rich

Neutron-rich

Prediction of decay modes (KTUY mass model) 
H. K and T. Tachibana, B. Phys.Soc. Jpn. 60, 717 (2005)

140

120

100

80

60

40

20

Pr
ot

on
 (A

to
m

ic
) n

um
be

r Z
 

24022020018016014012010080604020
Neutron number N

278[113]165
α-decay dominant
β-decay dom.
SF dom.
p-emission dom.
Proton-drip line

         by KTUY formula
β-stable nuclei

         by KTUY formula
known nucl.(2000)

N=28 N=50 N=82 N=126 N=184 N=228

Z=28

Z=50

Z=82

Z=114

Z=126

132Sn

208Pb

235U

298[114]184

an example of r-process path

294Ds184

10-18 
10-16 
10-14 
10-12 
10-10 
10-8 
10-6 
10-4 
10-2

Fission Yield of 235
U+n

th

drip line of β-delayed neutron emission

10-6
 

10-4
 

10-2
 

100
 

102
 

104
 

106
 

108
 

1010

Ab
un

da
nc

e 
of

 n
uc

lid
es

 (S
i=

10
6 )

240220200180160140120100806040200

Mass number A

Anders&Grevesse89  R-process only
 R-dom. with small s
 R-S comparative
 S-process only
 S-dom. with small r
 P-process only
 p-r-s comparative
 Other

130Te(R)

1H

56Fe

138Ba(S) 195Pt(R)
238U

235U

232Th

Solar abundances
13年7月31日水曜日



Understanding global properties of nuclei

Nuclear mass region

‣ (Extremely) Superheavy：Decay modes, Structure of superheavy double magic nuclei 298[114] 
and its neighboring, and beyond

‣ Proton-rich：N=126 neutron-deficient nuclei (Unknown peninsula) : enhancement of 
existence due to the closed shell

‣ Neutron-rich：Change of closed shell,  Fission in the superheavy, r-process nucleosynthesis

2

Superheavy

Proton-rich

Neutron-rich

Prediction of decay modes (KTUY mass model) 
H. K and T. Tachibana, B. Phys.Soc. Jpn. 60, 717 (2005)

140

120

100

80

60

40

20

Pr
ot

on
 (A

to
m

ic
) n

um
be

r Z
 

24022020018016014012010080604020
Neutron number N

278[113]165
α-decay dominant
β-decay dom.
SF dom.
p-emission dom.
Proton-drip line

         by KTUY formula
β-stable nuclei

         by KTUY formula
known nucl.(2000)

N=28 N=50 N=82 N=126 N=184 N=228

Z=28

Z=50

Z=82

Z=114

Z=126

132Sn

208Pb

235U

298[114]184

an example of r-process path

294Ds184

10-18 
10-16 
10-14 
10-12 
10-10 
10-8 
10-6 
10-4 
10-2

Fission Yield of 235
U+n

th

drip line of β-delayed neutron emission

Medium-heavy n-rich region: 
Astrophysics: r-process

Atomic Energy: Fission product 
from actinides 

10-6
 

10-4
 

10-2
 

100
 

102
 

104
 

106
 

108
 

1010

Ab
un

da
nc

e 
of

 n
uc

lid
es

 (S
i=

10
6 )

240220200180160140120100806040200

Mass number A

Anders&Grevesse89  R-process only
 R-dom. with small s
 R-S comparative
 S-process only
 S-dom. with small r
 P-process only
 p-r-s comparative
 Other

130Te(R)

1H

56Fe

138Ba(S) 195Pt(R)
238U

235U

232Th

Solar abundances
13年7月31日水曜日



Collaborate with:
Experiment(JAEA): K. Nishio, I. Nishinaka, H. Makii, T. Ishii, K. Tsukada, M. Asai, K. Furutaka
Beta-decay theory(JAEA): H. Koura, Y. Utsuno 
Fission theory(TIT): S. Chiba (TIT) , Y. Aritomo (TIT)
Nuclear Data and Reactor(JAEA): T. Kugo, O. Iwamoto, F. Minato

‘Development of High Precision of Delayed Neutron Rate for Evaluation 
of Operating Characteristic Properties of the Advanced Fast Reactors’
Entrusted project by the Ministry of Education, Culture, Sports, Science and Technology of Japan (MEXT)

Project Leader: S. Chiba (Tokyo Inst. Tech.), 
Term: 2012.11-2016.3,  Total budget: 200M yen (2M USD (1USD=100yen))

Name: Spokesman

1.Measurement of fission yield (FY) data via surrogate reaction
2.Construction of method for obtaining delayed neutron rate and decay 
heat with gross theory of beta decay 
3.Construction of theoretical method for obtaining independent FY with 
dynamical model (two-center shell model + Langevin eq.)
4.Nuclear data (including verification on reactor system)

Purpose: High-precision prediction of operating characteristic properties 
of highly-burn-up nuclear reactor and innovative nuclear reactor where 
minor actinides accumulate.  We will do as the following way: 
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forbid.
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Gross theory of beta decay

 

  
  

 

     Parent

Daughter

Qβ

Sn

β-delayed 
neutron emission

β

n

Sqared Nuclear 
Matrix Elements

Strength 
Function|M�(E)|2 =

� �max

�min

D(E, �)W (E, �)
dn1

d�
d�

D(E, �) : one particle strength function

half-live, energy distribution, 
delayed neutron probability

•Sum rules of the strength function are considered
•Fermi, Gamow-Teller and 1st forbidden transition are included

|MΩ(E)|2

Pn
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Decay heat and delayed neutron emission

Fission products (FP) release energy 
through β-decay and γ decay.  These sum 
of each energy release gives decay heat.

Delayed neutron rate:
Ω:Type of β decay (Fermi, 

Gamow-Teller, forbidden,...)

Pn:Delayed neutron probability

Theory:

Exp.:
f(t) =

∑

i

[
λi · Ei

β+γ · Ni(t)
]

=
∑

i

[
λi · (Ei

β + Ei
γ) · Ni(t)

]

νd =
∑

i

PniYi

1

Y:Cumulative Fission YieldDelayed neutron yield:
i:all delayed neutron precursors

Time-dependency of 
delayed neutron emission :

Decay heat :

f(t) =
∑

i

[
λi · Ei

β+γ · Ni(t)
]
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∑

i

[
λi · (Ei

β + Ei
γ) · Ni(t)

]

νd =
∑

i

PniYi

nd(t)

Eγ =
∑
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Ei
γIi

γ/number

Eβ =
∑
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Decay heat and delayed neutron emission

Fission products (FP) release energy 
through β-decay and γ decay.  These sum 
of each energy release gives decay heat.

Delayed neutron rate:
Ω:Type of β decay (Fermi, 

Gamow-Teller, forbidden,...)

Pn:Delayed neutron probability

Theory:
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Exp vs Gross theory ( 2nd version)
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13年7月31日水曜日
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Improvement of Gross theory from the 2nd version for 
half-life, neutron emission and decay heat (on going)

• Spin-parity of g.s. odd-odd
(odd-odd nuclei (J-, J is large in most case) → even-even nuclei (0+)

cf. H. Nakata, T. Tachibana and M. Yamada, NPA594 (1995): only for half-lives

• Spin-parity dependency of low-energy excited states 
• Re-consideration of sum rules of one-particle strength function in high-energy part

(Analysis of 90Zr(p,n): broad distribution of strength function at 50MeV)

• ...

●Experimental Data (obtained in 2012-2013)

β decay half-life
Delayed neutron prob.

Spin-parity

ENSDF
(May 2012 version)

collab. with  T.  Yoshida (TIT)

Decay heat

TAGS data

Lowell(U-235, etc (3 nucl.)
Oak Ridge (3 nucl.)

Yayoi (Univ. Tokyo) (3 nucl.)

extracted

extracted

extracted
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• We start a new project related to delayed neutron and decay 
heat based on nuclear theory and experiment for 3.5 year.

• In this project we will develop a comprehensive code to 
calculate beta-decay half-lives, delayed neutron emission prob., 
decay heat, and relevant quantities.

• Through this work, we will contribute to further understanding 
nuclear structure and decay, and will also apply to nuclear 
astrophysics as the r-process nucleosynthesis. 

Summary
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• We start a new project related to delayed neutron and decay 
heat based on nuclear theory and experiment for 3.5 year.

• In this project we will develop a comprehensive code to 
calculate beta-decay half-lives, delayed neutron emission prob., 
decay heat, and relevant quantities.

• Through this work, we will contribute to further understanding 
nuclear structure and decay, and will also apply to nuclear 
astrophysics as the r-process nucleosynthesis. 

Summary

Accumulating experimental data is quite important for 
understanding of nuclei, and is also quite helpful for constructing 

nuclear theory (model).

And...
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