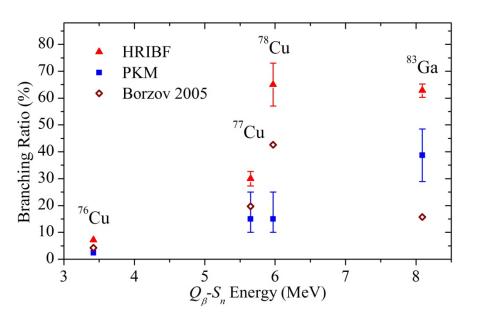
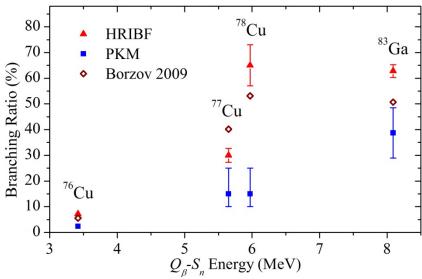

Studies of βn-emitters with BRIKEN "ORNL proposal"

Krzysztof Rykaczewski

ORNL

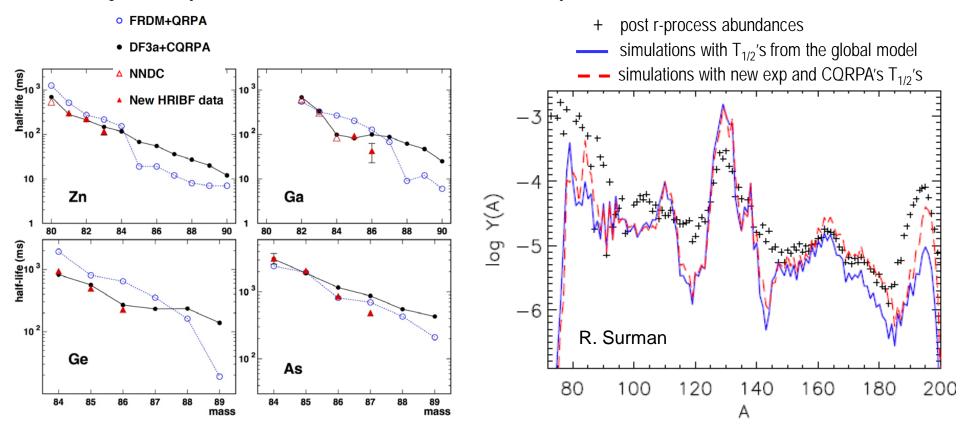
Workshop on beta-delayed neutron emission experiments at RIBF RIKEN, Wako 31th July 2013





Selection of \(\beta n - emitters to be studied with BRIKEN \)

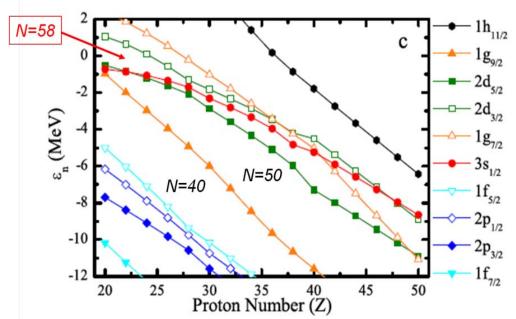
- Important physics case: β1n and β2n competition, r-process path (exotic nuclei like β2n emitters are all of interest for r-process calculations, R. Surman, Gordon Conf 2013)
- Realistic measurement:
 - total ion count ~ 1000 of wanted fragment vs total rate up to ~ 200 pps. maximum of 100 hours counting with 10 pnA 345 MeV/u ²³⁸U beam
 - BRIKEN with \sim 80% neutron-efficiency will have 2n efficiency \sim 16 times higher than hybrid 3Hen 12 beta-n-n events identified β 2n decay channel for about 13 000 ions of 86 Ga collected at Oak Ridge
- Bonus info: measurable rate and possibly β0n/βn of even more exotic isotone (e.g., ⁸³Zn vs ⁸²Cu), for potential future n-γ counting


Experiments guiding theoretical calculations of β -decay properties

Beta Decay Properties for n-rich nuclei

Madurga et al., Phys. Rev. Lett. 109, 112501, 2012, Mazzocchi et al., Phys. Rev. C 87, 034315, 2013, Miernik et al., 2013

- Experimental beta half-lives are shorter than FRDM+QRPA predictions used in r-process simulations.
- **DF3a+CQRPA** are mostly in good agreement with experiment but start to depart from experiment away from ⁷⁸Ni.


r-process sensitivity study

- β-decays near ⁷⁸Ni influence abundances of A > 140 nuclei
- better agreement with data.

Extension of HRIBF βn-studies to β1n-β2n emitters produced at RIKEN

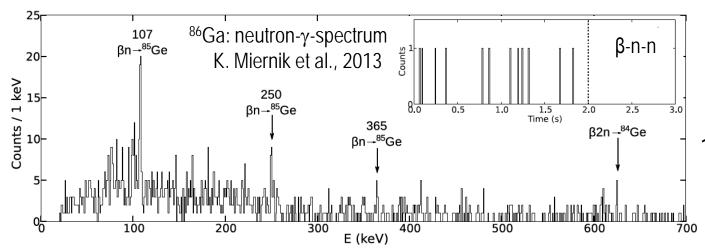
- The best production rates of very exotic neutron-rich nuclei at RIKEN.
- Counting of identified implanted ions helps to determine absolute branching ratios (ranging-out and fragmentation).
- BRIKEN high efficiency/granularity allows to study $\beta 1n$ and $\beta 2n$ competition (branching ratios).
- Hybrid BRIKEN allows for ion-beta-neutron-gamma counting.

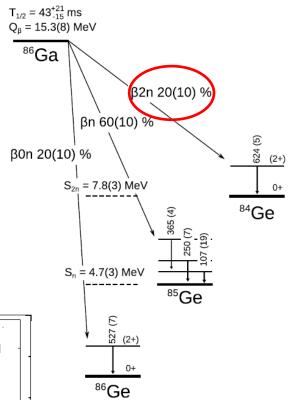
N=58, N=56 or no sub-shell closure beyond N=50?

J. Dobaczewski in Winger et al., PR C81, 2010

R. Grzywacz in Padgett et al, PR C 82, 2010

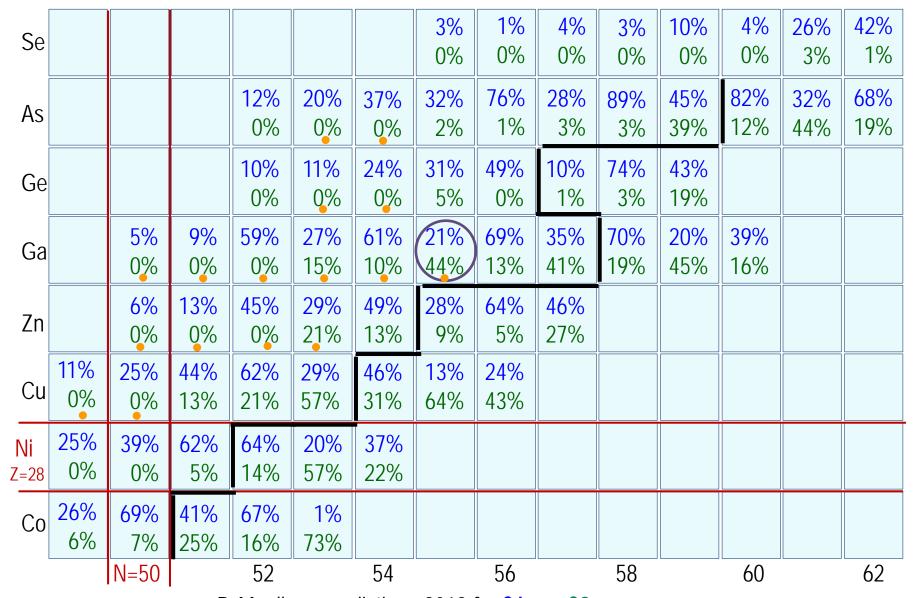
Competition of β1n and β2n emission in 86Ga decay


β1n ~ 60 %, β2n ~ 20%, Miernik et al., submitted to PRL


• Data on only two β 2n emitters are published for heavy nuclei 98 Rb (β 2n ~ 0.06%) and 100 Rb (β 2n ~ 0.16%)

• 86Ga, N/Z~1.77, is 15 neutrons away from last stable Ga isotope

FRDM-QRPA: $\beta 1n : \beta 2n \rightarrow 21\% : 44\%$, DF3a+CQRPA: $\beta 1n : \beta 2n \rightarrow 20\% : 12\%$ HRIBF exp: $\beta 1n : \beta 2n \rightarrow 60\% : 20\%$

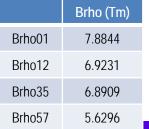

 Large β2n branching ratios indeed occur in exotic nuclei like ⁸⁶Ga but modeling should account for 1n – 2n competition!

100 μs time gate was used for n-γ correlations

(some of) the βn-emitters N≥50 studied at the HRIBF (Oak Ridge), including β2n emitter (86 Ga)

P. Moeller's predictions 2012 for **β1n** vs **β2n** http://t2.lanl.gov/nis/molleretal/publications/tpnff.dat

¹³⁵In setting: Setting parameters and rates

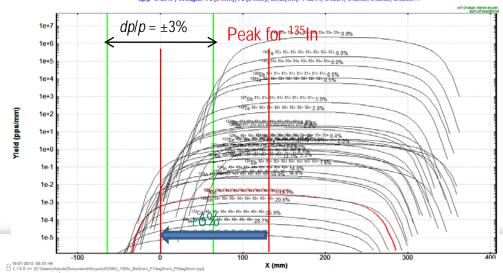

Calculations from Naoki Fukuda, Toshi Kubo, Naohito Inabe and Robert Grzywacz for lighter nuclei

LISE++ file: 238U_135In_Be3mm_F1deg5mm_F5deg5mm.lpp

Primary beam: ²³⁸U⁸⁶⁺, 345 MeV/u, 10 pnA

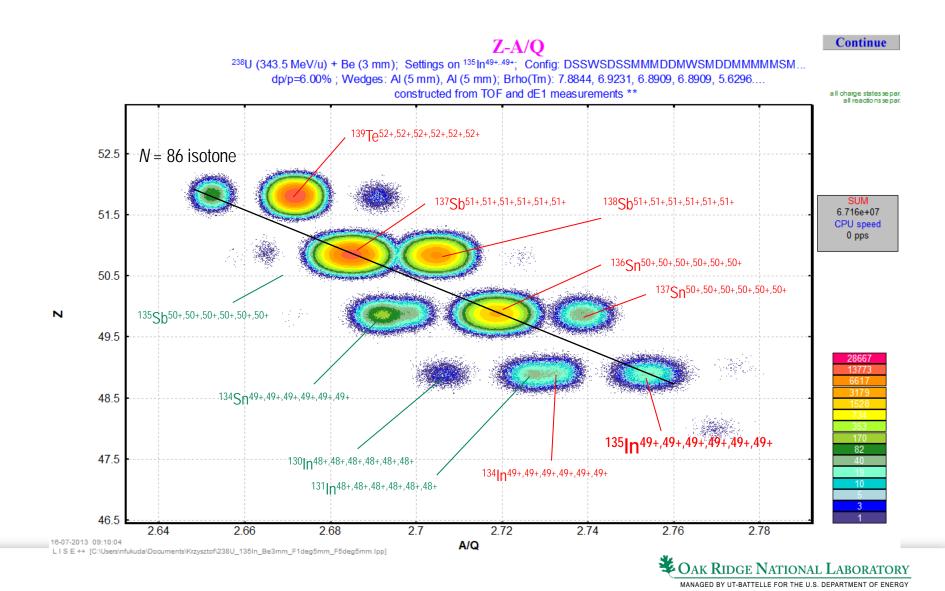
	Thickness(wedge angle)
Target	Be 3 mm
F1 deg.	Al 5 mm(-5.7 mrad), $d/R = 0.300$
F5 deg.	AI 5 mm(4.3 mrad), d/R = 0.435

Focus	L (mm)	R (mm)
Exit B.D.	80	125
F1	64.2	64.2
F2	3	3
F5	120	120
F7	3	3


 $E(^{137}In) = 181 \text{ MeV/u after F7}$

3.0270					U //8	U //8	
	¹³⁴ Te	¹³⁵ Te	136Te	137Te	¹³⁸ Te	¹³⁹ Te	140Te
							17
		5.62e-9			1.28e-1	2.96e+1	5.76e-3
	A	0%			0%	0.001%	0%
	¹³³ Sb	134 Sb	135 Sb	136 Sb	137 Sb	138 Sb	139 Sb
		1.84e-5		6.8e-4	2.79e+1	1.04e+1	1.39e-4
	0% .	0%	-8	0%	0.011%	0.149%	0%
	¹³² Sn	133 Sn	134 Sn	135 Sn	136 Sn	137 Sn	138 Sn
							J
				6.57e-2	5.77e+0	1e-1	2.98e-7
	0%	0%	0%	0.001%	1.457%	0.782%	0%
•	131 _{In}	132 n	133 n	134 n	¹³⁵ ln	136 _{ln}	137 _{In}
					.ee[III		
				3.45e-2	6.63e-2		
	0%	0%		0.147%	6.215%	0.648%	
	¹³⁰ Cd	131Cd	132Cd	133Cd	¹³⁴ Cd	¹³⁵ Cd	¹³⁶ Cd
			8.52e-9	6.64e-4			
			0%	1.124%			
	129∆a	130 A a	434 A	432 A			
	ızaΔα	130Δα	101Δα	102 ΔΛ	ησοΔη	101/101	ισοΔα

	Rate (pps/10 pnA)
¹³⁵ In rate	6.63 x 10 ⁻²
Total rate at F3	1.6 x 10 ⁴
Total rate at F7	75


F1x ($B\rho$ distribution)
1 slit-Xspace: output before slits

38U (343.5 MeV/u) + Be (3 mm); Settings on 135 In^{491,491}; Config: DSSWSDSSMMMDDMWSMDDMMMMMS dp/p=6.00%; Wedges: Al (5 mm), Al (5 mm); Brho(Tm); 7.8844, 6.9231, 6.8909, 6.8909, 5.6296....

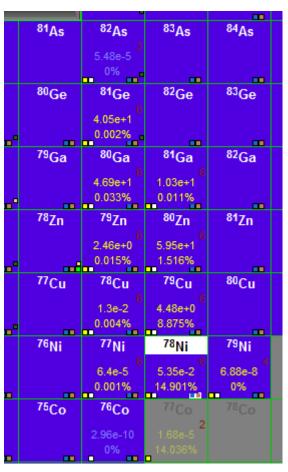
100 hours accumulation: 135 ln 2.4 x 104 counts

135In setting: Zvs A/Q plot /from Naoki Fukuda – Toshi Kubo/

β1n emitter ⁷⁸Ni, T_{1/2}~110 ms, P_n ~39% (P. Moeller)

⁷⁸Ni - the only doubly-magic nucleus on the r-process path and one of the anchor points for nuclear

structure


• 79 Cu - also N=50 waiting point, $T_{1/2}$ = 290 (20) ms from HRIBF, verification of P_n data, exp β 1n ~ 72% - 55%

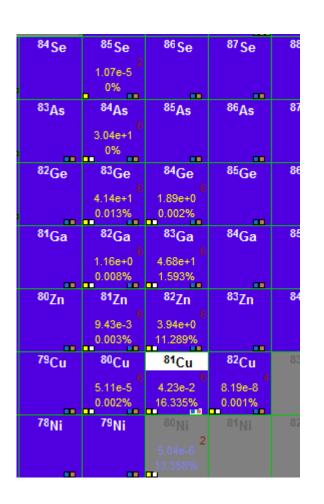
⁷⁸Ni setting:

total ion count 78 Ni – 19 000 vs total rate of ~ 180 pps, total ion count 79 Cu – 1.6 * 10⁵ total ion count 80 Zn – 2 * 10⁷ total ion count 81 Ga – 3.7 * 10⁶ consistent study of four N=50 emitters

an example of 10 hours experiment, not 100 hours one

LISE++/BigRIPS calculations by Naoki Fukuda, Naohito Inabe, Toshi Kubo and by R. Grzywacz

β1n - β2n emitter ⁸¹Cu and β1n ⁸²Zn, $T_{1/2}$ =228(10) ms,

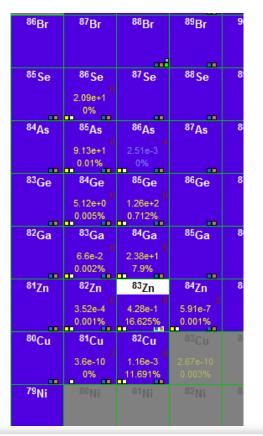

- β1n and β2n competition 62%: 21 % (81Cu) and 45% β1n predicted for 82Zn, both on r-process path
- 81Cu important for potential future n-γ counting with hybrid BRIKEN

⁸¹Cu setting:

total ion count 82 Zn – 1.4 * 10⁶ vs total rate of ~ 130 pps, total ion count 81 Cu – 1500

both results achievable within 100 hours counting

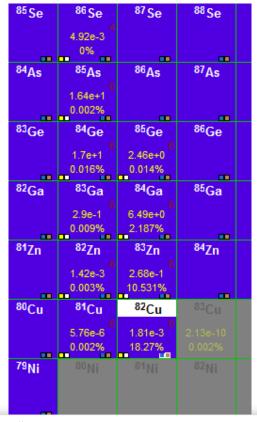
LISE++/BigRIPS calculations by Naoki Fukuda, Naohito Inabe, Toshi Kubo and by R. Grzywacz



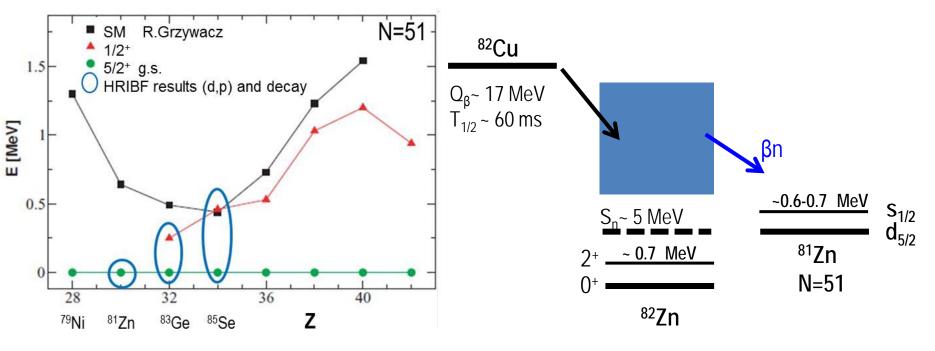
β1n-β2n emitters ⁸³Zn, $T_{1/2}=117(20)$ ms, and ⁸²Cu

- β1n and β2n competition 29%: 21 % (83Zn) and 29%: 57% (82Cu), both on r-process path
- 82Cu also important for potential future n-γ counting with hybrid BRIKEN

⁸³Zn setting:


total ion count 83 Zn – 154 000 vs total rate of ~ 250 pps, total ion count 82 Cu – 400

LISE++/BigRIPS calculations by Naoki Fukuda, Naohito Inabe, Toshi Kubo and by R. Grzywacz


82Cu setting:

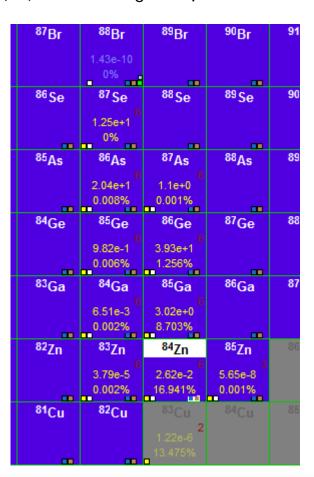
total ion count 83 Zn – 96 000 vs total rate of ~ 50 pps, total ion count 82 Cu – 650

Evolution of neutron single-particle states for N > 50 search for a potential sub-shell closure $v2d_{5/2} - v3s_{1/2}$

Padgett et al., Phys. Rev C 82, 064314, 2010

- Energy gap at N=56 or at N=58 or no gap beyond ⁷⁸Ni ?
- Single particle energy of 3s_{1/2} vs 2d_{5/2} in N=51 ⁷⁹Ni ?
 - Answer \rightarrow 81,82Cu β -n- γ exp at RIKEN and 79,80Co β -n- γ exp at FRIB

β1n - β2n emitter ⁸⁴Zn and β1n ⁸⁵Ga, T_{1/2}=93(7) ms,


- β1n and β2n competition 49%: 13 % in ⁸⁴Zn and predicted as 61%: 10 % for ⁸⁵Ga, but β2n was not observed at Oak Ridge in three experiments, βnγ data compatible with β0n: β1n ~ 25:75
- verification of ⁸⁶Ge β1n measured recently at Oak Ridge as ~ 45(15)%, Moeller gives β1n as 24%

⁸⁴Zn setting:

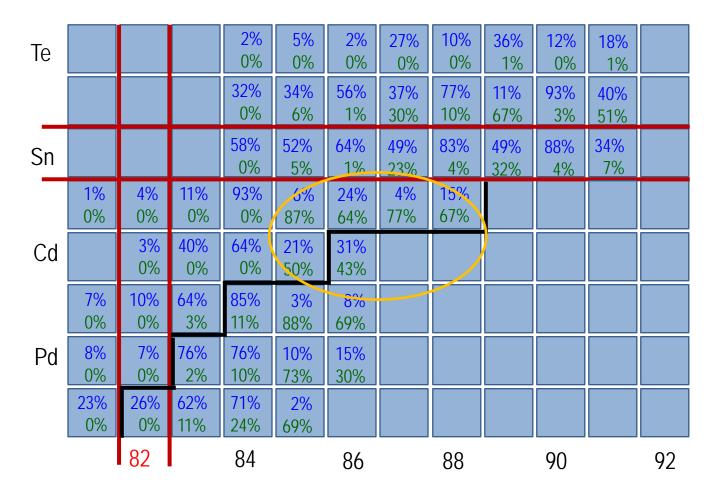
total ion count 84 Zn – 9400 vs total rate of ~ 80 pps, total ion count 85 Ga – 1.1*106 total ion count 86 Ge ~ 14*106

an example of 10 hours experiment, not 100 hours one

LISE++/BigRIPS calculations by Naoki Fukuda, Naohito Inabe, Toshi Kubo and by R. Grzywacz

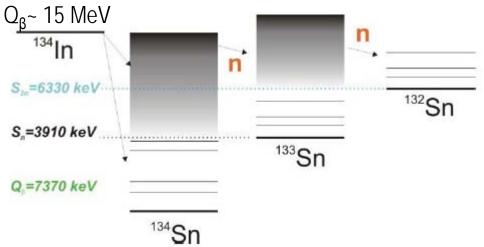
Potential Z=34 and N=56 or N=58 sub-shell closures and $\beta n \gamma$ decays of 91,92 As to 90,92 Se* isotopes.

- with increasing Z above Z=28, proton $f_{5/2}$ orbital is getting filled for neutron-rich nuclei N > 50 , up to Z=34
- depending on the relative energies of neutron $2d_{5/2}$ and $3s_{1/2}$ orbitals above N=50, an energy gap can be created at N=56 or at N=58
- an onset of substantial deformation can change this simplified picture, the experimental verification like the structure of Z=34 Se isotopes is needed. The most n-rich and (partially) published As→Se β-decay is ⁸⁷As βγ/βηγ-decay (Mazzocchi et al, 2013). Likely, new EURICA data will contribute here.
- The final experiments on n-rich As isotopes are for hybrid BRIKEN βnγ


```
<sup>91</sup>As βn-decay to 2+ level in N=56 <sup>90</sup>Se total ion count <sup>91</sup>As (β1n/2n~ 28%/2%) ~ 1.3*10<sup>5</sup> vs total rate of ~ 70 pps (~ 10 hours experiment) ^{92}As β-decay to 2+ level in N=58 ^{92}Se total ion count ^{92}As (β1n/2n~ 89%/3%) ~ 3.6*10<sup>4</sup> vs total rate of ~ 10 pps (~ 100 hours exp)
```

LISE++/BigRIPS calculations by Naohito Inabe - Toshi Kubo

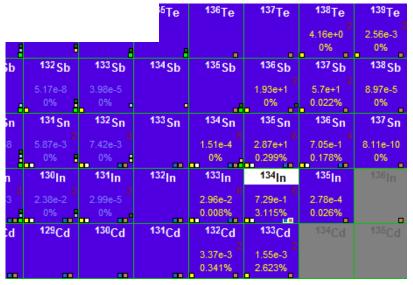
multi-neutron emitters beyond ¹³²Sn: ¹³⁴⁻¹³⁷In


(β n-emission driven by ¹³²Sn double shell closure and respective large Q_{β} values)

P. Moeller's predictions 2012 for $\beta 1n$ vs $\beta 2n$

β1n - β2n emitters ¹³⁴In and ¹³³Cd

β1n and β2n competition 6%: 87 % (¹³⁴In) and 50%: 21% (¹³³Cd)
 conflicting reports on P_n values for ¹³⁴In, see e.g., Abriola, Singh, Dillmann, "βn-emission evaluation" 2011.



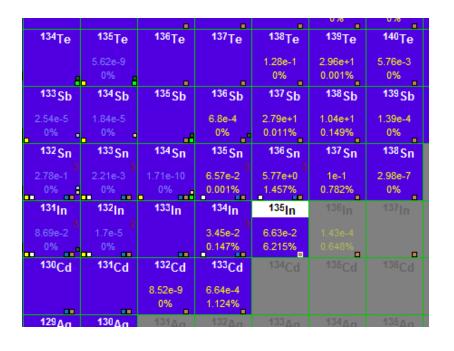
¹³⁴In setting:

total ion count 134 In – 2.6 * 10^5 vs total rate of ~ 120 pps, total ion count 133 Cd ~ 500 vs total rate of ~ 120 pps

10 hours exp for ¹³⁴In, and 100 hours for ¹³³Cd

LISE++/BigRIPS calculations by Naoki Fukuda - Toshi Kubo

β 1n - β 2n - β 3n emitter ¹³⁵In (Q_{β} ~ 14.1 MeV)


- $Q_{\beta 1n} = 11.9 \text{ MeV}$, $Q_{\beta 2n} = 7.9 \text{ MeV}$ and $Q_{\beta 3n} = 5.5 \text{ MeV}$, $\beta 3n$ ending in doubly-magic ¹³²Sn
- competition of $\beta 1n : \beta 2n : \beta 3n$ is about 24% : 64% : 7% according to P. Moeller

¹³⁵In setting:

total ion count 134 In – 2.4 * * 10⁴ vs total rate of ~ * 80 pps

50 hours exp for ¹³⁵In should reveal the presence of multi-neutron emission

LISE++/BigRIPS calculations by Naoki Fukuda - Toshi Kubo

$\beta 1n - \beta 2n - \beta 3n - (\beta 4n)$ emitter ¹³⁶In ($Q_{\beta} \sim 15$ MeV)

- $Q_{\beta 1n} = 11.7 \text{ MeV}$, $Q_{\beta 2n} = 9.4 \text{ MeV}$, $Q_{\beta 3n} = 5.5 \text{ MeV}$ ($Q_{\beta 4n} = 3.1 \text{ MeV}$ thanks to ^{132}Sn)
- competition of $\beta 1n : \beta 2n : \beta 3n$ is about 7% : 4% : 77% according to P. Moeller

¹³⁶In setting:

total ion count 134 In ~ 800 counts vs total rate of ~ 10 pps,

100 hours exp for ¹³⁶In has a chance to reveal the presence of 1n, 2n and 3n (4n?) emission (after further ²³⁸U beam intensity increase at RIKEN)

136	137	138	139	140	141	142
					7.6e-3	1.76e-9
					0%	0%
¹³⁵ Te	¹³⁶ Te	¹³⁷ Te	¹³⁸ Te	¹³⁹ Te	¹⁴⁰ Te	¹⁴¹ Te
	1.05e-1			3.2e-2	6.18e+0	3.86e-4
, ,	0%			0%	0.009%	0%
	435 cu	136 CI	137 CI		139 CI	140 cu
¹³⁴ Sb	¹³⁵ Sb	¹³⁶ Sb	¹³⁷ Sb	¹³⁸ Sb	¹³⁹ Sb	¹⁴⁰ Sb
1.24e-5	5.34e-2		3.88e-5	3.43e+0	4.47e-1	3.39e-6
0%	0%	_ 0	0%	0.049%	0.313%	0%
133 Sn	134 Sn	135 Sn	136 Sn	137 Sn	138 Sn	139 Sn
311	311	311	311	311	311	311
	3.96e-4		4.72e-3	3.52e-1	3.29e-3	
0%	0%		0.001%	2.74%	0.948%	
132 n	133 n	134In	135 n	¹³⁶ ln	137 _{In}	138 _{ln}
3						
3e-3	6.54e-7		2.06e-3			
0%	0%		0.193%	10.109%	0.712%	
131Cd	132Cd	133Cd	134Cd	¹³⁵ Cd	¹³⁶ Cd	137Cd
- 55						
		7.87e-10				
		0%				

LISE++/BigRIPS calculations by Naoki Fukuda -Toshi Kubo

Summary of proposed '1st and 2nd day' BRIKEN exps

ion setting	physics (in addition to r-process input)	counting time (10 hours or 100 hours)
⁷⁸ Ni	the only doubly-magic βn-emitter βn-values other N=50 ⁷⁹ Cu, ⁸⁰ Zn, ⁸¹ Ga	10 h
⁸¹ Cu	⁸¹ Cu β1n/2n, ⁸² Zn β1n	⁸² Zn-10 h, ⁸¹ Cu – 100 h
⁸² Cu	⁸² Cu, ⁸³ Zn β1n/2n, future βnγ	⁸³ Zn-10 h, ⁸² Cu – 100 h
⁸⁴ Zn	⁸⁴ Zn, ⁸⁵ Ga β1n/2n, ⁸⁶ Ge β1n	10 h
⁹¹ As	β 1n for future β n γ (2+ in N=56 90 Se,ns _{1/2} -nd _{5/2})	10 hours
⁹² As	β 0n/ β 1n for future β n γ (2+ in N=58 92 Se, ns _{1/2} -nd _{5/2})	100 hours
¹³⁴ In	¹³⁴ In – flag example of β2n-emitter (1n/2n?)	¹³⁴ In - 10 h
1351m	¹³³ Cd β1n/2n, future βnγ	¹³³ Cd - 100 h
¹³⁵ In	135 In – β 1n/2n/3n	50 h
¹³⁶ ln	136 In – β 1n/2n/3n/4n	> 100 hours

