Physics at Hadron Colliders

4. Search for Physics Beyond the Standard Model

- Supersymmetry
- Other Extensions of the Standard Model
 - Extra dimensions
 - Extra gauge bosons

Why do we look for extensions of the Standard Model?

- 1. Gravity is not incorporated in the Standard Model
- 2. Many open questions in the Standard Model
 - Hierarchy problem: m_W (100 GeV) $\rightarrow m_{Planck}$ (10¹⁹ GeV)
 - Unification of couplings
 - Flavour / family problem

All this calls for a *more fundamental theory*, the Standard Model Being only a low energy approximation \rightarrow **New Physics**

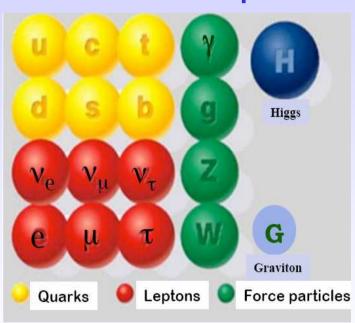
Candidate theories: Supersymmetry

Extra Dimensions

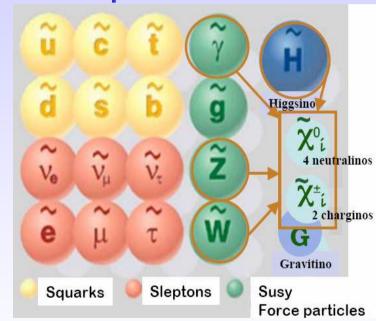
Technicolor

.

All predict new physics at the


TeV scale!

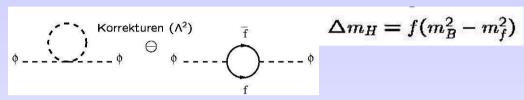
Strong motivation for LHC mass reach ~ 3-5 TeV


Supersymmetry

Extends the Standard Model by predicting a new symmetry
Spin ½ matter particles (fermions) \Leftrightarrow Spin 1 force carriers (bosons)

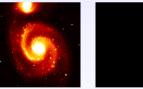
Standard Model particles

SUSY particles


New Quantum number: R-parity: $R_p = \left(-1\right)^{B+L+2s} = +1$ SM particles -1 SUSY particles

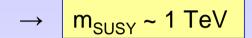
Experimental consequences of R-parity conservation:

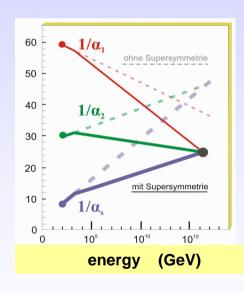
- SUSY particles are produced in pairs
- Lightest Supersymmetric Particle (LSP) is stable.
 In most models LSP is also weakly interacting:
 LSP = χ⁰₁ (lightest neutralino)
 - → LSP is a good candidate for cold dark matter
 - \rightarrow LSP behaves like a $\nu \rightarrow$ it escapes detection
 - $\rightarrow E_T^{miss}$ (typical SUSY signature)


Why do we like SUSY so much?

1. Quadratically divergent quantum corrections to the Higgs boson mass are avoided

(Hierarchy or naturalness problem)


- 2. Unification of coupling constants of the three interactions seems possible
- 3. SUSY provides a candidate for dark matter,



The lightest SUSY particle (LSP)

A SUSY extension is a small perturbation, consistent with the electroweak precision data

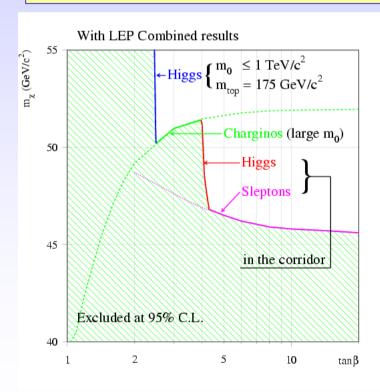
the only problem:.....

No experimental evidence for SUSY so far!

Either SUSY does not exist

OR

 m_{SUSY} large (>> 1 TeV) \rightarrow not accessible at present machines

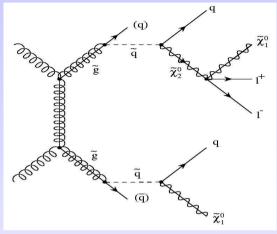

LHC should say "final word" about low energy SUSY

The masses of the SUSY particles are not predicted;

Theory has many additional new parameters (on which the masses depend)

However, charginos/neutralinos are usually lighter than squarks/sleptons/gluinos.

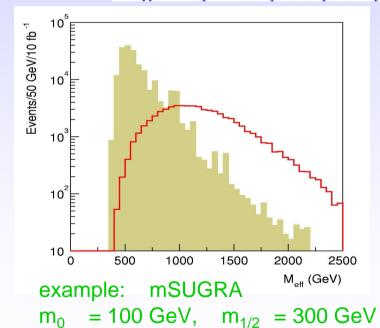
```
<u>Present mass limits</u>: m (sleptons, charginos) > 90-103 GeV LEP II
m (squarks, gluinos) > ~ 250 GeV Tevatron Run 1
m (LSP, lightest neutralino) > ~ 45 GeV LEP II
```



LEP-II limit on the mass of the Lightest SUSY particle

assumption: lightest neutralino = LSP

Search for Supersymmetry at the LHC

- If SUSY exists at the electroweak scale, a discovery at the LHC should be easy
- Squarks and Gluinos are strongly produced

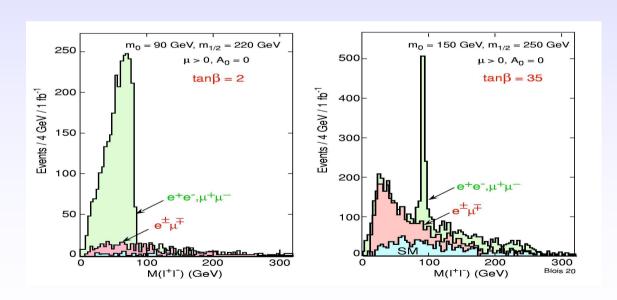

They decay through cascades to the lightest SUSY particle (LSP)

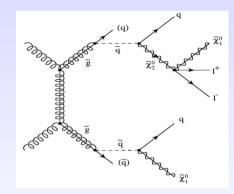
- ⇒ combination of Jets, Leptons, E_Tmiss
- 1. Step: Look for deviations from the Standard Model Example: Multijet + E_T^{miss} signature + leptons
- 2. Step: Establish the SUSY mass scale use inclusive variables, e.g. effective mass distribution
- 3. Step: Determine model parameters (difficult)
 Strategy: select particular decay chains and use kinematics to determine mass combinations

Squarks and Gluinos

- Strongly produced, cross sections comparable to QCD cross sections at the same mass scale
- If R-parity conserved, cascade decays produce distinctive events: multiple jets, leptons, and E_T^{miss}
- Typical selection: $N_{iet} > 4$, $E_T > 100$, 50, 50, 50 GeV, $E_T^{miss} > 100$ GeV
- Define: $M_{eff} = E_T^{miss} + P_T^1 + P_T^2 + P_T^3 + P_T^4$ (effective mass)

 $\tan \beta = 10,$ $A_0 = 0, \ \mu > 0$

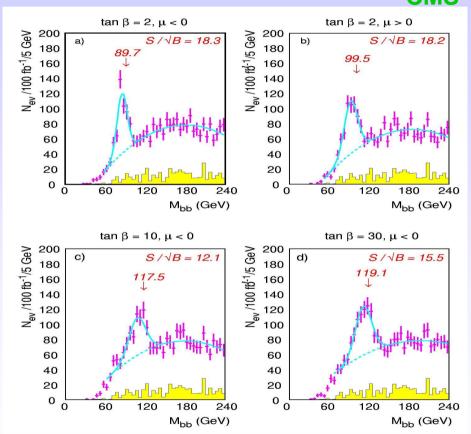

LHC reach for Squark- and Gluino masses:

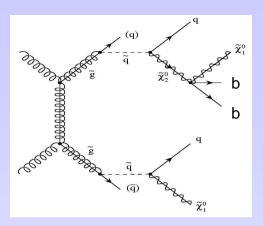

 $\begin{array}{cccc} 1 \text{ fb}^{\text{-1}} & \Rightarrow & \text{M} \sim 1500 \text{ GeV} \\ 10 \text{ fb}^{\text{-1}} & \Rightarrow & \text{M} \sim 1900 \text{ GeV} \\ 100 \text{ fb}^{\text{-1}} & \Rightarrow & \text{M} \sim 2500 \text{ GeV} \end{array}$

TeV-scale SUSY can be found quickly!

Determination of model parameters

- Invisible LSP ⇒ no mass peaks, but kinematic endpoints
 - ⇒ mass combinations
- Simplest case: $\chi^0_2 \to \chi^0_1 \ell^+ \ell^-$ endpoint: $M_{\ell\ell} = M(\chi^0_2) M(\chi^0_1)$ (significant mode if no $\chi^0_2 \to \chi^0_1 Z$, $\chi^0_1 h$, $\ell \ell$ decays)
- Require: 2 isolated leptons, multiple jets, and large E_T^{miss}

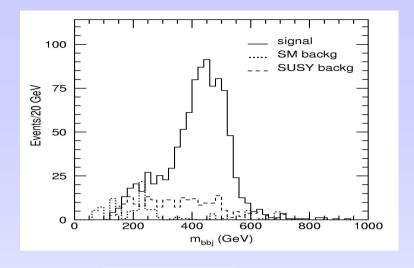




Modes can be distinguished using shape of $\ell\ell$ -spectrum

$h \rightarrow bb$:

important if $\chi^0_2 \to \chi^0_1 h$ is open; bb peak can be reconstructed in many cases

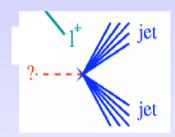

Could be a Higgs discovery mode!

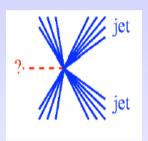
SM background can be reduced by applying a cut on E_T^{miss}

work backwards the decay chain: example:

$$pp o ilde{q}_L ilde{q}_R$$
: $ilde{q}_R o ilde{\chi}_1^0 q \ ilde{q}_L o ilde{\chi}_2^0 q o ilde{\chi}_1^0 h q o ilde{\chi}_1^0 b \overline{b} q$

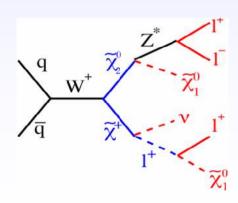
combine $h \rightarrow bb$ with jets to determine other masses


 $ilde{q}
ightarrow ilde{\chi}_1^0 h q$ endpoint


Strategy in SUSY Searches at the LHC:

- Search for multijet + E_T^{miss} excess
- If found, select SUSY sample (simple cuts)
- Look for special features (γ 's, long lived sleptons)
- Look for ℓ[±], ℓ⁺ ℓ⁻, ℓ[±] ℓ[±], b-jets, τ's
- End point analyses, global fit → SUSY model parameters

Search for SUSY at the Tevatron


1. Search for Squarks and Gluinos: Jet + E_T^{miss} signature produced via QCD processes

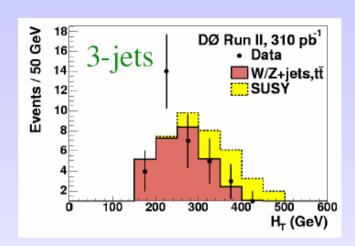
2. Search for Charginos and Neutralinos: Multilepton + E_T^{miss} signature produced via electroweak processes (associated production)

$$\widetilde{\chi}_{2}^{0}\widetilde{\chi}_{1}^{\pm} \longrightarrow l^{\pm}l^{\mp}l^{\pm}\widetilde{\chi}_{1}^{0}\widetilde{\chi}_{1}^{0}X$$

Search for Squarks and Gluinos

 Three different analyses, depending on squark / gluinos mass relations:

$$\tilde{q}\,\bar{\tilde{q}} \rightarrow q\,\tilde{\chi}_1^0 \bar{q}\,\tilde{\chi}_1^0$$


$$\tilde{q}\,\tilde{g} \rightarrow q\,\tilde{\chi}_1^0\,q\,\bar{q}\,\tilde{\chi}_1^0$$

$$\tilde{g}\,\tilde{g} \rightarrow q\,\bar{q}\,\tilde{\chi}_1^0 q\,\bar{q}\,\tilde{\chi}_1^0$$

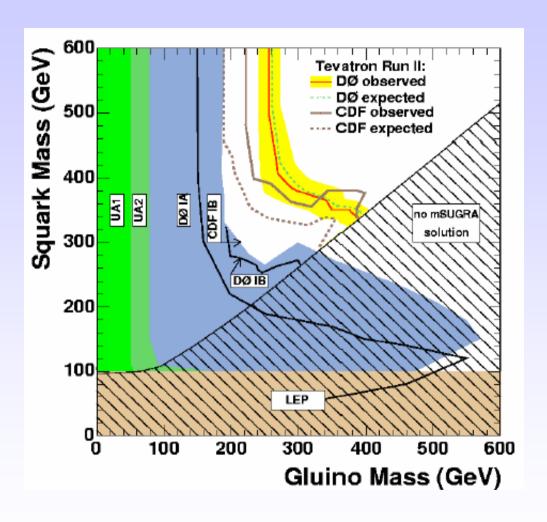
• Main backgrounds: $Z \rightarrow vv + jets$, tt, W + jet production

Search for Squarks and Gluinos (cont.)

DØ analysis $L = 310 \text{ pb}^{-1}$

Example: 3 jet + E_T^{miss} search

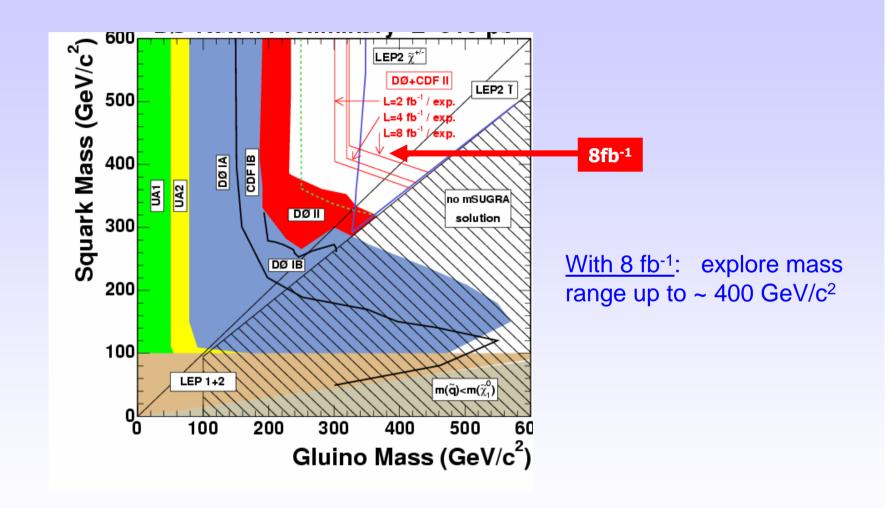
Discriminating variable:


•
$$H_T = \Sigma E_T(jets)$$

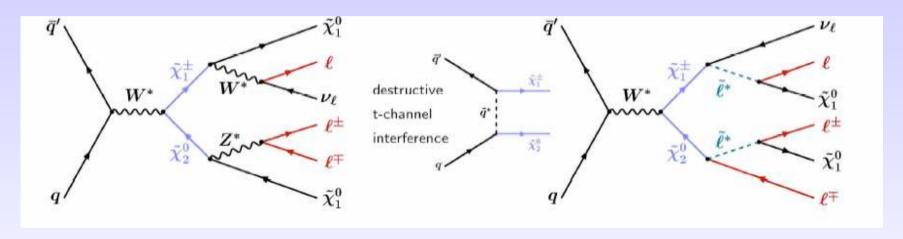
Comparison between data and expected background:

	Data	Total background			
"Dijet"	6	4.8 +4.4 -2.0 (stat) +1.1 -0.8 (sys)			
"3 jets"	4	3.9 +1.3 -1.0 (stat) +0.7 -0.8 (sys)			
"Gluino"	10	10.3 +1.5 -1.4 (stat) +1.9 -2.5 (sys)			

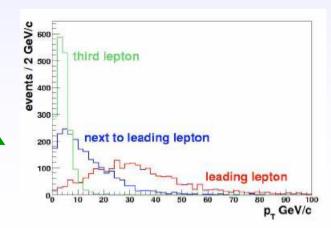
No excess above background → NO evidence for SUSY


Excluded regions in the m(squark) vs. m(gluino) plane

Excluded mass values:


m(gluino), m(squark) > ~ 330 GeV

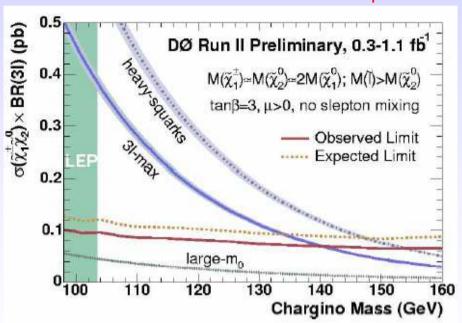
Future Prospects for Squark and Gluino Searches



Search for Charginos and Neutralinos - the tri-lepton channel-

 Gaugino pair production via electroweak processes (small cross sections, ~0.1 – 0.5 pb, however, small expected background)

For small gaugino masses (~100 GeV/c²)
 one needs to be sensitive to low P_T leptons



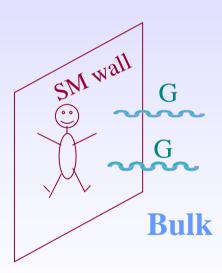
Analysis:

- Search for five different (lll) + like-sign μμ final states with missing transverse momentum
- In order to gain efficiency, no lepton identification is required for the 3rd lepton, select: two id. Leptons + track with P_T > 4 GeV/c

	Lum. (fb ⁻¹)	Data	Total background
ee+l	1.2	0	0.76 ±0.67 (stat)
μμ+Ι	0.3	2	1.75 ±0.57 (stat)
eµ+l	0.3	0	0.31 ±0.13 (stat)
SS µµ	0.9	1	1.10 ±0.40 (stat)
eτ+l	0.3	0	1.58 ±0.14 (stat)
μτ+l	0,3	1	0.36 ±0.13 (stat)

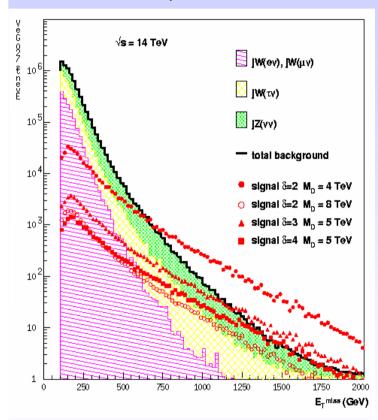
mSUGRA interpretation

For specific scenarios: sensitivity / limits above LEP limits; e.g., $M(\chi^{\pm}) > 140 \text{ GeV/c}^2$ for the 3l-max scenario


Extra dimensions at the LHC

- Much recent theoretical interest in models with extra dimensions
 Explain the weakness of gravity (or hierarchy problem) by extra dimensions
- New physics can appear at the TeV-mass scale i.e. accessible at the LHC

Example: Search for direct Graviton production


$$gg
ightarrow gG$$
 , $qg
ightarrow qG$, $q\overline{q}
ightarrow Gg$
$$q\overline{q}
ightarrow G\gamma$$

 \Rightarrow Jets or Photons with E_T^{miss}

Search for escaping gravitons at LHC

Jet + E_T^{miss} search:

Main backgrounds: jet+
$$Z(\rightarrow vv)$$
, jet+ $W\rightarrow$ jet+ $(e,\mu,\tau)v$

$$G_N^{-1} = 8\pi R^{\delta} M_D^{2+\delta}$$

 δ : # extra dimensions M_D = scale of gravitation R = radius (extension)

$$M_D^{max} = 9.1, 7.0, 6.0 \text{ TeV}$$
 for $\delta = 2, 3, 4$ Extension: $10^{-5}, 10^{-10}, 10^{-12} \text{ m}$

"LHC experiments are also sensitive to this field of physics" → robust detectors

Search for heavy resonances

examples: heavy gauge bosons W and Z

many possible theoretical models

use leptonic decay modes: $W' \to \ell \nu$ $Z' \to \ell \ell$

Sensitivity for Tevatron Run II data

Simulations with LHC experiments

Theoretical models

SM extension (purely academical)

Symmetry: $SU(2)_L \times U(1)_Y$

New heavy bosons: W' and Z' with SM couplings

Superstrings inspired E(6)

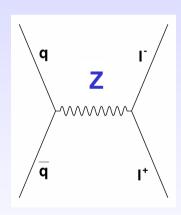
Symmetry: E(6) \rightarrow SU(5) x U(1)_{χ} x U(1)_{ψ} New heavy bosons: neutral states χ and ψ

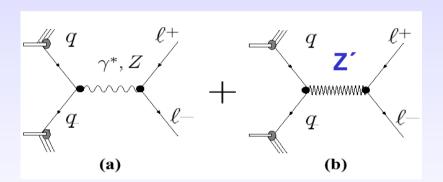
L-R symmetric models

Symmetry: $SU(2)_R \times SU(2)_L \times U(1)_Y$

New heavy bosons: W_R and Z_R with V+A couplings

Little Higgs models

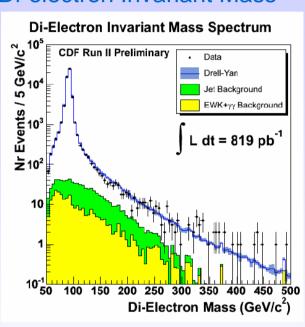

Symmetry: $SU(5) \rightarrow [SU(2)x U(1)]^2$

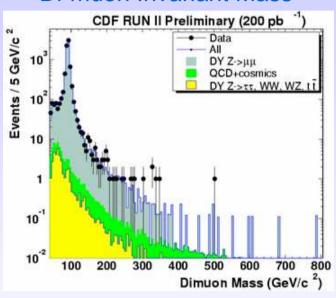

New heavy bosons: W_H and Z_H with V-A couplings

Search for New Resonances in High Mass Di-leptons

Neutral Gauge Boson Z

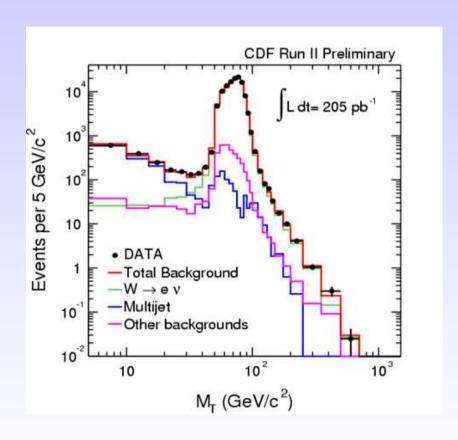
Neutral Gauge Boson Z'




Main background from Drell-Yan pairs

Tevatron data and mass limits

Di-electron Invariant Mass

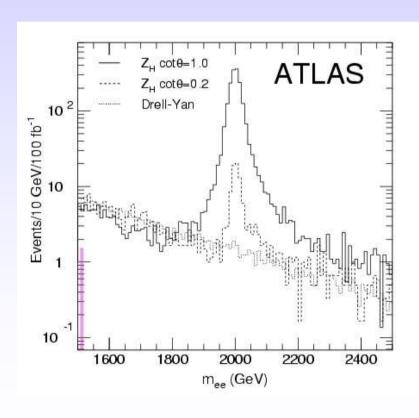

Di-muon Invariant Mass

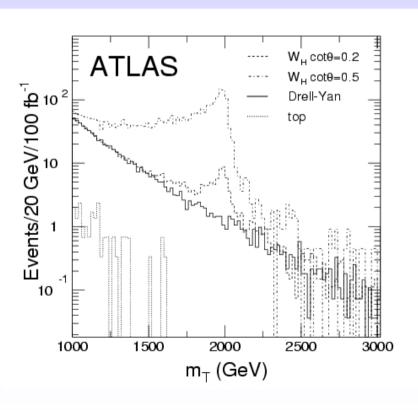
Data are consistent with SM background → No excess observed.

Z' mass limits (SM couplings)		ee	μμ	ττ		
95% C.L.	CDF /D0:	850	835	394	GeV/c ²	

Search for W' \rightarrow ev

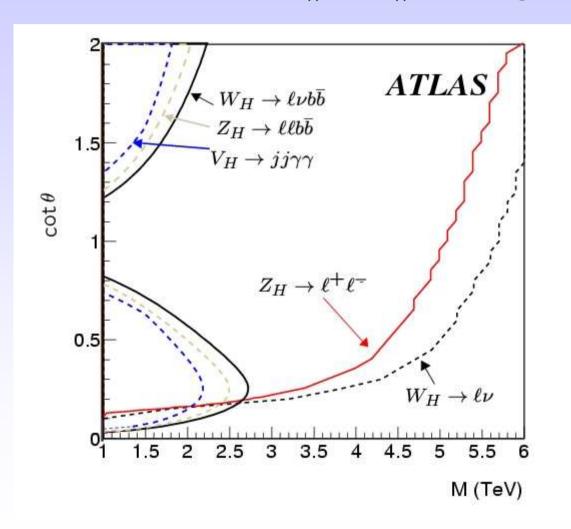
Data consistent with well known W background




Limit: $M(W') > 842 \text{ GeV/c}^2$

(assuming Standard Model couplings)

Search for $Z' \rightarrow e^+e^-$ and $W' \rightarrow ev$ at the LHC


- Z´ and W´ are the heavy gauge bosons Z_H and W_H predicted by the Little Higgs model
- Assume M(Z_H)=M(W_H)=2 TeV
- ATLAS simulations for L=300 pb⁻¹

Potential mass limits at the LHC

ATLAS discovery potential for Z_H and W_H assuming L=300 pb⁻¹

Summary of the lecture

- Experiments at Hadron Colliders have a huge discovery potential
 - SUSY: discovery of TeV-scale SUSY should be easy, determination of model parameters is more difficult
 - Exotics: experiments seem robust enough to cope with new scenarios
- No new signals observed at Tevatron (for the moment)