

● Exotic physics with tops

Introduction:

A background for many...
...and a signal for some

Early physics with third generation quarks

Organization:

Interaction with the top group

News:

Validation of MC samples

Marcel Vos, IFIC Valencia

for the exotics group

● **tt: A background to many...**

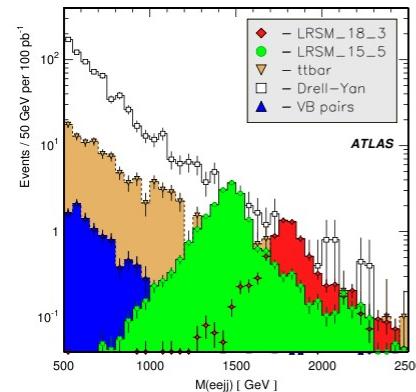
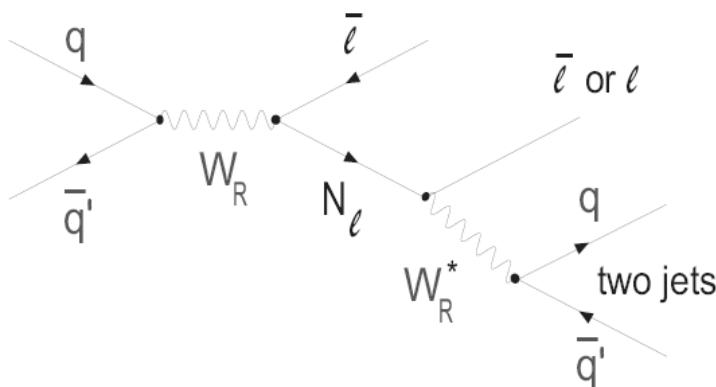
Many possible (non-SUSY) extensions of the Standard Model: Extra Dimensions, technicolour, Little Higgs and related models.

Generic searches (by final state) to be performed in Exotics group. Some examples from CSC paper:

Z' and W' searches, di-lepton resonance, lepton+MET channel:
SM tt is the principal irreducible background.

Search for scalar lepto-quarks and right-handed W-bosons and neutrinos in di-lepton+jets final states:

tt the dominant background for LRSM searches, second for lepto-quark



Vector-boson scattering:

tt and tW events form an important background to WW signals

Black holes:

Standard Model tt among important backgrounds

● A background to many... LRSM searches

Physics sample	Before selection	Baseline selection	$m_{ejj} \geq 100$ GeV	$m_{eejj} \geq 1000$ GeV	$m_{ee} \geq 300$ GeV	$S_T \geq 700$ GeV
LRSM_18_3	0.248	0.0882	0.0882	0.0861	0.0828	0.0786
LRSM_15_5	0.470	0.220	0.220	0.215	0.196	0.184
$Z/\gamma^*, m \geq 60$ GeV	1808.	49.77	43.36	0.801	0.0132	0.0064
$t\bar{t}$	450.	3.23	3.13	0.215	0.0422	0.0165
VB pairs	60.94	0.610	0.522	0.0160	0.0016	0.0002
Multijet	10^8	20.51	19.67	0.0490	0.0444	0.0444

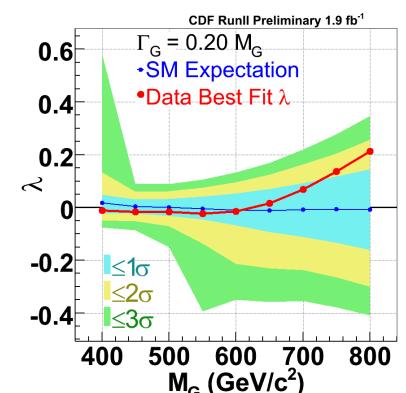
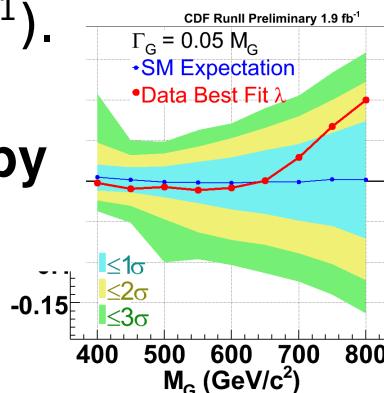
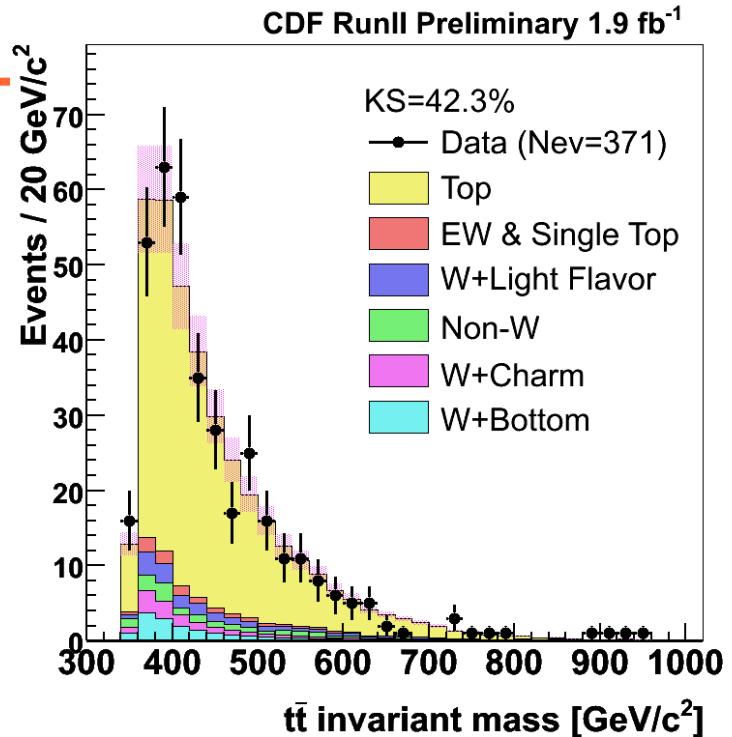
Table 5: LRSM dielectron analysis. Partial cross-sections (pb) that survive the selection criteria.

Only very special $t\bar{t}$ events pass the selection cuts: fully leptonic (2 leptons, 2 jets), with significant jet activity (S_T). How well will we know this corner of phase space.

From Exotics CSC
(Stroehmer,
Savinov)

● Tevatron searches

Important program at the Tevatron ~ 20 papers since 2000.




(narrow) tt resonances

*D0, FERMILAB-PUB-08-097E, arXiv:0804.3664
CDF, Phys.Rev.Lett.85 (2000), arXiv:0710.5335v1*

W'-> tb search @ D0: *Phys.Rev.Lett.100 (2008) 21180*

Few tt events at large invariant mass (CDF totals 347 evts. In 1 fb⁻¹).

Exclusion limits are modest, limited by the Tevatron center-of-mass energy

CDF note 9164: massive gluon search in 1.9 fb^{-1} : data compatible with SM within 1.7σ

- ...and a signal to some.

Exotics Jet + X group covers those searches for Beyond the Standard Model physics where one or several jets are the “principal” signature.

Third generation quarks play a special role
At the experimental level:

- high p_T b-tagging
- High p_T top reconstruction/tagging

In many models:

- $t\bar{t}$ resonance search
- searches for Little / Twin Higgs W_H
- ...

● Early exotic physics

Considering that:

Heavy partners to electro-weak gauge bosons (W' , Z') tend to be produced with moderate cross-section

Very complex final states are inaccessible to early studies

We chose:

The search for KK gluons decaying to $t\bar{t}$
as our candidate for early ATLAS analysis

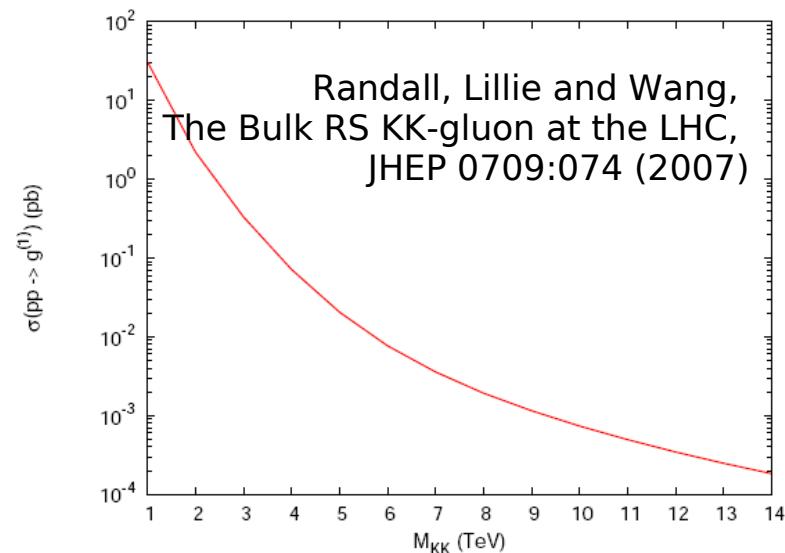
With only 10 pb^{-1} at 10 TeV (*), but with a rather involved understanding of many aspects of the detector, we expect to improve on the Tevatron limit

(*) is this the relevant center-of-mass energy until we show that the machine will work at 14 TeV ? Or should we revise the whole MC strategy?

● Properties of the KK gluon

Kaluza Klein excited state of the gluon, expected to be present in Large Extra Dimensions models where gauge bosons propagate into the bulk

It's a massive gluon, with strong coupling to quarks (typically does not couple to SM gluon):


enormous cross-section ----->;

$$\sigma(G_{KK}^{1 \text{ TeV}} \rightarrow tt) = 30 \text{ pb}$$

in the LHC @ 14 TeV

Taking 10 pb^{-1} :

1000s of signal events

● Properties of the KK gluon

Kaluza Klein excited state of the gluon, expected to be present in Large Extra Dimensions models where gauge bosons propagate into the bulk

It's a massive gluon, with strong coupling to quarks (typically does not couple to SM gluon):

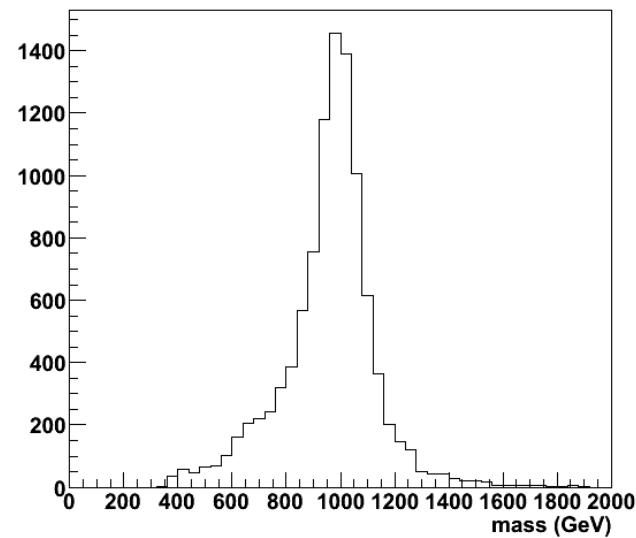
The KK gluon is particularly interesting as it may couple preferentially to third generation quarks (Randall, Lillie and Wang, The Bulk RS KK-gluon at the LHC, JHEP 0709:074 (2007))

$$\text{BR } (G_{\text{KK}} \rightarrow t\bar{t}) = 90 \%$$

tt resonance searches complement di-jet studies

● Properties of the KK gluon

Kaluza Klein excited state of the gluon, expected to be present in Large Extra Dimensions models where gauge bosons propagate into the bulk


It's a massive gluon with strong coupling to quarks (typically does not couple to SM gluon):

experimentally it reveals itself as a not-so-narrow resonance in $t\bar{t}$.

$$\Gamma = 0.18 \text{ M}$$

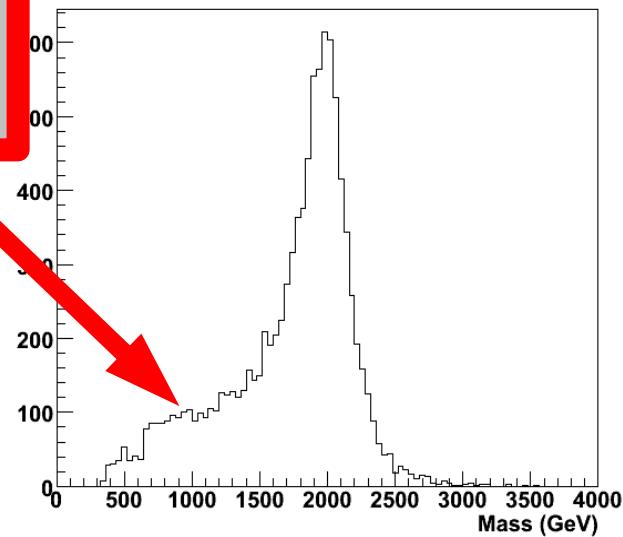
generator level mass distribution

----->>

Generally, we cannot assume that heavy resonances with very large cross-section at the LHC (large couplings to light quarks) are narrow (Compared to the experimental resolution)

● Properties of the KK gluon

Kaluza Klein excited state of the gluon, expected to be present in Large Extra Dimensions models where gauge bosons propagate into the bulk


It's a massive gluon with strong coupling to quarks (typically

Low mass tail due to convolution of relatively broad Breit-Wigner with rapidly falling quark PDFs at high x

$$\Gamma = 0.18 M$$

generator level mass distribution

----->>

Generally, we cannot assume that heavy resonances with very large cross-section at the LHC (large couplings to light quarks) are narrow (Compared to the experimental resolution)

● Organization: Interaction with the top group

Jet+X is a small group compared to i.e. lepton+X.
Still, we have three papers in the proposed early physics list.

In case of third generation quarks, work closely together with top group:

Reconstruction and tagging of high pT top “jets”
(top reconstruction, led by G. Brooijmans and I. Van Vulpen)

Understanding of SM $t\bar{t}$ spectrum in terms of top p_T , or invariant mass of the pair
(top cross-section group, led by S. Bentvelsen and M. Cobal)

● News: meetings

Those involved in high p_T top physics should follow:

- these meetings
- top reconstruction (phone) meetings
- the top workshop (Grenoble, 23-25 oct.)

● News: DPD discussion

**Events where the leading jet E_T is 70 GeV are not very useful to us.
Generally, many exotic searches have rather exotic signatures.**

A very efficient skim with large rejection can be made on the basis of missing transverse energy, number of leptons or jet E_T .

Slimming and thinning, on the other hand, is not very promising for semi-leptonic tt events (need everything).
We can use prescaled performance DPDs to understand jets, b-tagging, leptons, etc.

Can/should we define a Jet+X physics DPD? No pre-scale!!!
Run dedicated reconstruction only on preselected streams/events?

● News: validation of MC samples

Work in progress (high priority):

GKK -> tt (Luis March, Marcel Vos)

Z' -> tt (Luis March, Marcel Vos)

W' -> tb (Manouk Rijpstra, see talk)

Expected next year:

high p_T SM tt ($p_T > 500$ GeV, on top quota)

● Conclusions

There's a lot of work to be done:

On Monte Carlo events:

- realistic reconstruction of high p_T tops
- inventory of relevant models
- validation MC samples
- develop tools to take into account the width of the resonance
- full MC study into sensitivity for resonances in range 0.7 - 1.5 TeV

AND soon also on data:

- understand di-jets, W+jets, SM tt
- understand jet and E_T^{miss} resolution
- make sure selection of high p_T b- and top works

Before we do the measurement of $d\sigma/dM$ and derive limits on models. Don't wait for this to be done by others (there are no others)