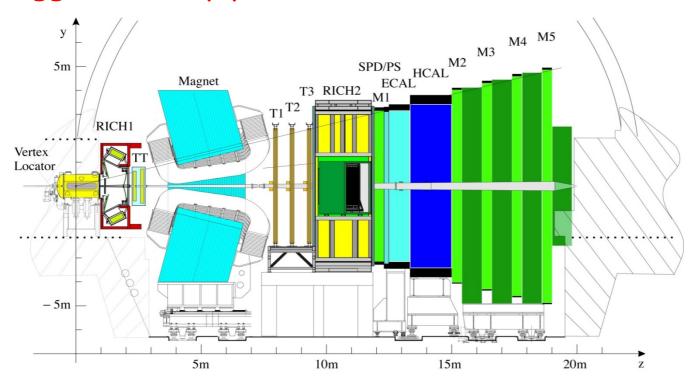


EP with the LHCb detector

E. Graugés Madrid 27/5/2008

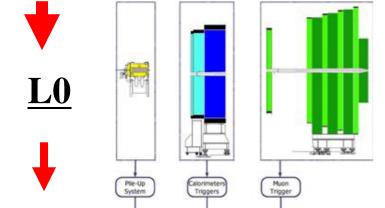
INDEX:

- Introduction
- Our contribution to the Detector (past, present & future)
- Physics Analysis related work
- People and institutions involved
- Budget and time schedule



- $\sigma_{\rm bb}$ ~ 500µb in pp collisions at \sqrt{s} = 14TeV
 - Luminosity limited to few 10³²cm⁻²s⁻¹
 - 10^{12} bb produced per year (10^7 s) at 2×10^{32} cm⁻²s⁻¹
 - Interesting B decays have small branching ratios
 - Typically $< 10^{-3} \Rightarrow O(10)$ Hz

⇒ Trigger is a key point



40 MHz

"High p_{T} " e, γ , hadrons,

"High p_T " μ , $\mu\mu$

pileup info

LO: on custom boards
hight pT candidates + not too busy
Uses calo, muon system, 2 layers of VELO

SPD (BCN contribution) separates electrons and photons, provides veto for complicated events

HLT: runs in a PC farm of 1000 16core nodes Full detector = full flexibility

Our group responsible of a (muon+track) line in the LHCb HLT

HLT

2 KHz

Physics: CP violation & Rare decays

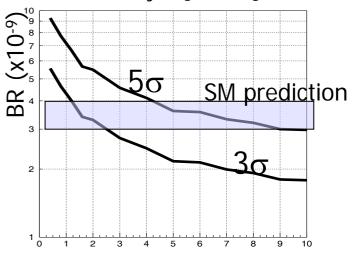
• **CP:** look for / constraint New Physics in B meson decays.

Examples:

$$\chi \cong arg(V_{ts})-\pi$$
 via phase of B_s mixing, eg $B_s \rightarrow J/\psi(\mu^+\mu^-)\phi(K^+K^-)$

$$\gamma \cong -arg(V_{ub})$$
 from tree decays, $B \rightarrow DK$, $B \rightarrow h^+h^-$

Flavour tagging: many CP analysis require to reconstruct the flavour of the B meson at production


• Strong involvement from our group in flavour tagging algorithms

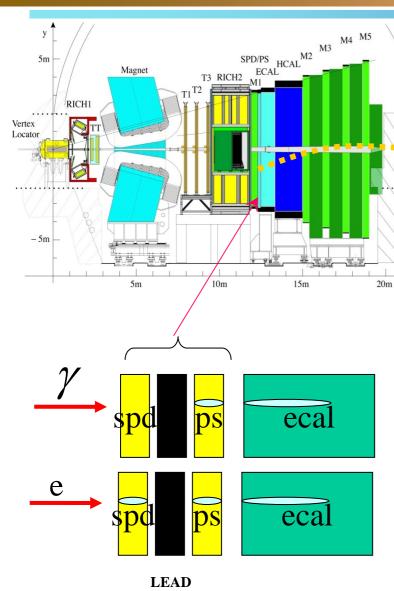
Rare decays:

- Via loops => small BR in SM => very sensitive to NP!
- − NP in angular distributions, eg B⁰ \rightarrow K*⁰ μ ⁺ μ [−]
- − Star measurement: BR of $B_s \rightarrow \mu^+\mu^-$
 - Expected Tevatron limit 10x higher than SM!
 - LHCb: with L=2fb-1, 3σ observation if SM value

Strong involvement from our group in the measurement

LHCb Sensitivity (signal+bkg is observed)

Integrated Luminosity (fb⁻¹)



The SPD detector (our HW contribution)

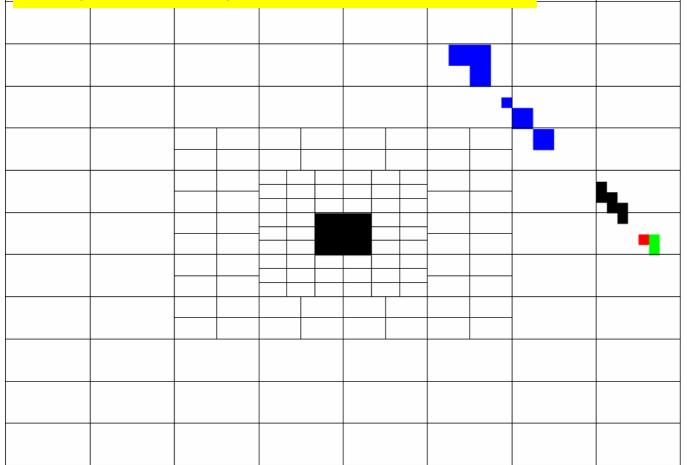
➤ 6000 pieces

SPD/PS system determines the e/γ nature of energy deposited at L0 trigger level. Its multiplicity is used to veto complicated events

(front view)

BCN responsibilities: ALL SPD electronics (from PMT to trigger boards), i.e.: design, test, production, test at lab, installation at CERN site, test on-site, commissioning, calibration, monitoring & maintenance, (full resposibility)

The SPD detector (today)



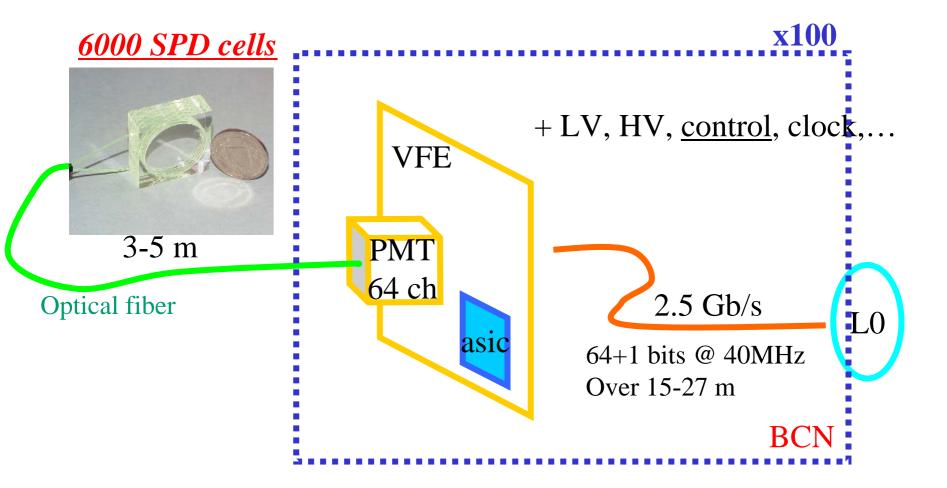
➤ All channels already tested and working

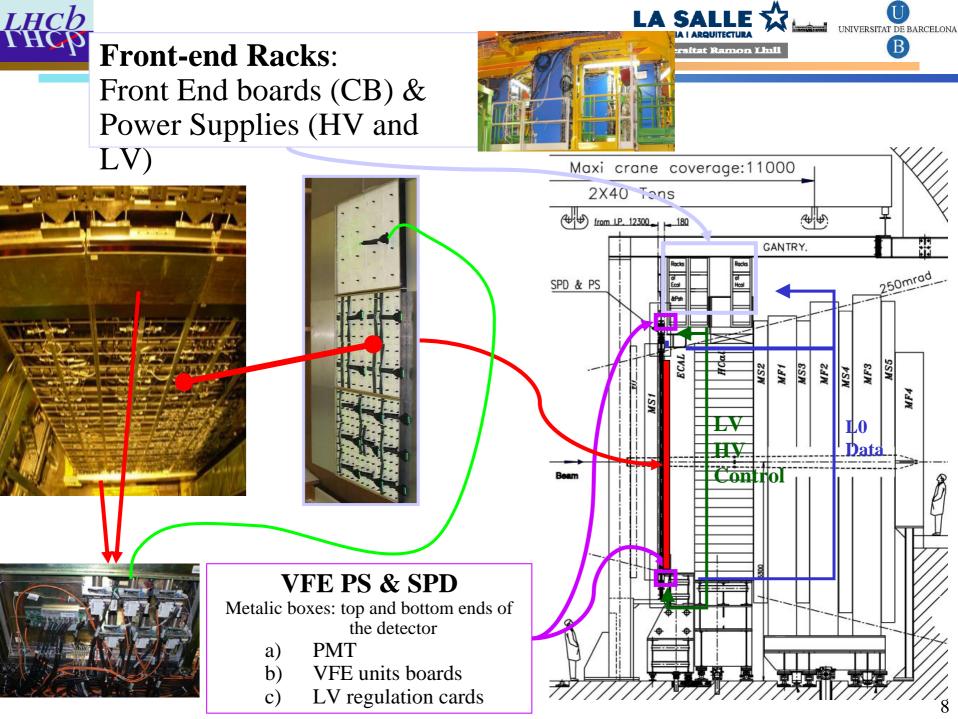
➤ Right now taking cosmic runs....

HCAL

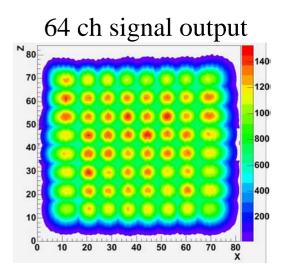
ECAL

PS


SPD



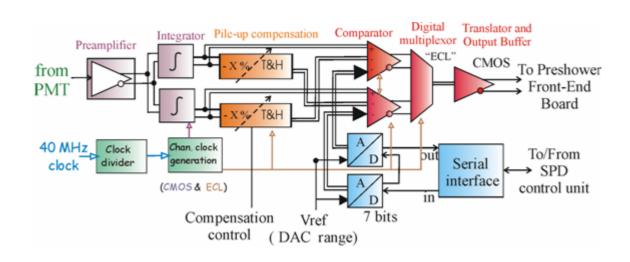
Hardware responsibilities



MaPMT's (110)

Characterized, tested (Gain, Uniformity, Linearity & X-talk) and installed All properties under specs (NIM paper)

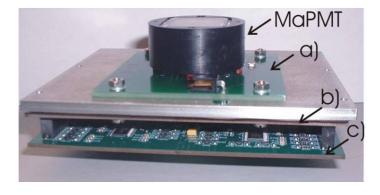
ASIC (8 dual channel, analog + digital)
After 4 designed prototypes, the RUN5 production resulted in


1300 produced + 600 unpacked Needed 800+160 (tested & mounted)



- > Radiation qualification (with krypton beam) @GANIL:
- ASIC, VFE board, and all the other components


(NIM paper)


Rad-Hard design

AMS BiCMOS 0.8 µm – 30 mm²

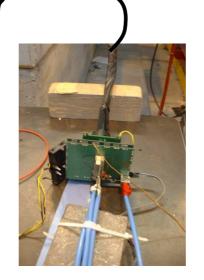
- a) PMT base
- b) 8-Asic board
- c) Digital + Serializer

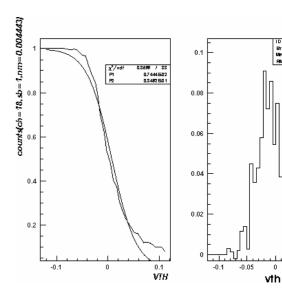
VFE board involves:

- Binary output 0 or 1 to correspond with photon or electron
- **Communication with Control Board** in FE crate in order to get the initial conditions from the ECS as programmable thresholds,

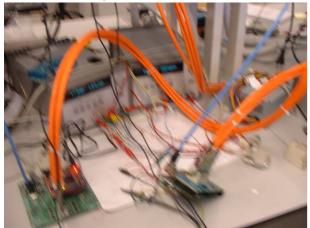
> Burn-in Test:

• Test against *infant mortality* of (semiconductor) all VFE components





0.05

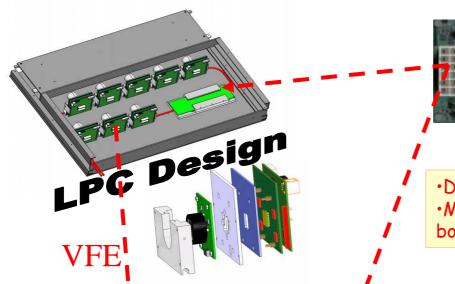

Test beam:

Lab test bench (x 120) (without light)

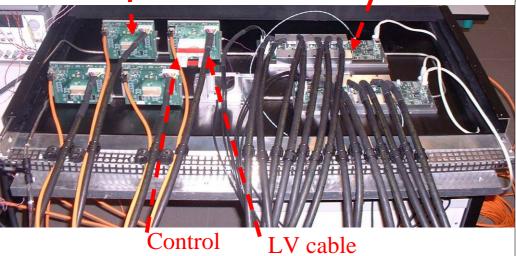
with light

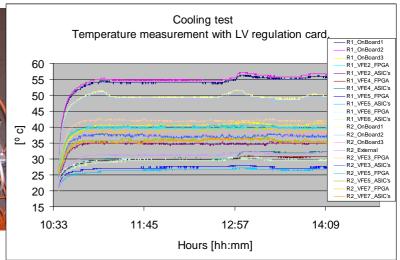
- •Performance of signal processing in agreement with ASIC performance.
- •Crosstalk < 2% (Contacts in PMT base-board)
- •Short term stability (12 h) < 2mV

Re-tested at CERN during installation



Electronics Box (16)

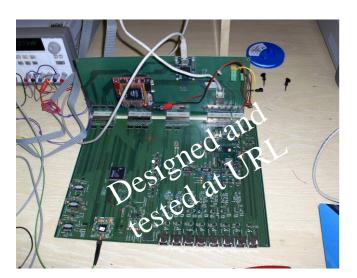


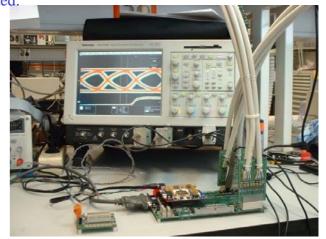

- A VFE box was fully equipped with VFE and LV regulator cards, cabled and tested.
- The VFE box incorporates a water cooling system that has also been tested with success.

LV regulation card

- ·Designed, produced, tested and installed by our group
- •Monitoring: V, I and Temperature (on board, on VFE board and external).

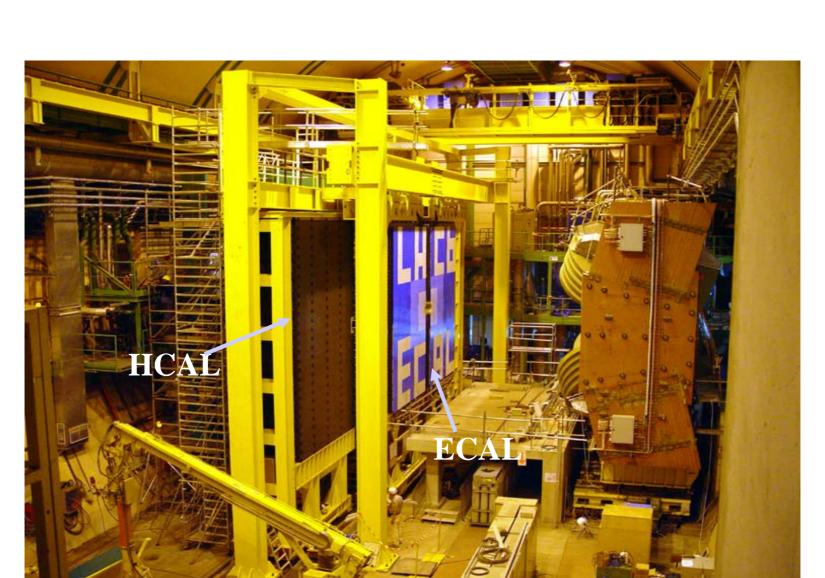
Control Board (16)



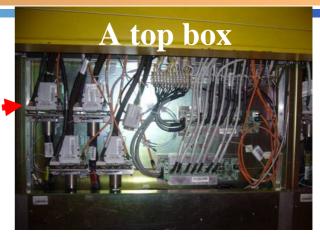

Installed at the racks over the ECAL platform

Cables (~500)

- a) VFE board: SPD PS LVDS data link:
 - 2.5 Gb/s connection (30m long)
 - Bit Error Rate (BER) tested: BER<10⁻¹³
 - •120 links produced, tested and installed
- b) LV & HV
- c) Control cables



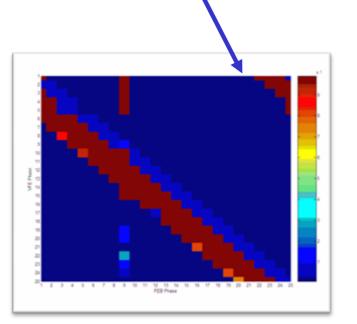
LHCb



SPD Electronics installation

working at bottom

- Commissioning, Maintenance and Operation of the SPD (single responsible)
- LHCb detector contributions (service task, shifts, etc...)
- Physics Analysis
- R&D for possible LHCb upgrade

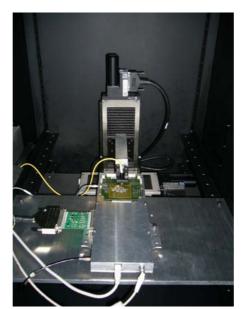


Commissioning Phase

- SPD integrated in experiment ECS
- SPD integrated in the DAQ & Trigger path
- Performing SPD time alignment

- SPD is regularly included in LHCb Global Commissioning Weeks
- Preparing SPD for calibration

The coordination of the Calorimeter Experiment Control System (ECS) falls under the responsibilities of our group (X. Vilasís)


- EoI (LHCb upgrade)
 CERN/LHCC/2008-007
 LHCb 2008-019
- LHCb lumi. upgrade not related with SLHC

Proposed R&D topics are:

• All sub-detectors need to replace or adapt their FEE to the new 40MHz read-out scheme, and drive their data over the GBT link to the "New Read out Board".

The (Calorimeter) FE-boards need to be replaced to accommodate the increase of full read-out from 1 to 40MHz.

 SPD is already readout at 40 MHz

R&D Plans:

Based on the SPD experience:

- Design CALO RO boards
- Study Si-PM as replacement photodetector for the RICH

Running the LHCb experiment

➤ It is very important that experts continue in the project to participate in the SPD maintenance and the detector upgrade (SLHCb)

From UB:

- ➤ Edu Picatoste: Commissioning coordinator (MEC Tech.)

 1 year co-finance + 2 years 100%
- ➤D. Gascon: Upgrade R&D effort coordinator (GC Tech.)

 3 year co-finance

From URL:

- > X.Vilasís (ECS)
- Mar Roselló (CB)
- Carlos Abellán: Technician 3 year 100%

7 PhD's (UB + URL)

Eugeni Graugés

Xavier Vilasís

Lluís Garrido

Hugo Ruiz

Ricardo Graciani (LHCb GRID PI)

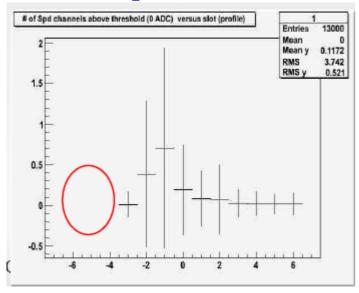
Post-doc (Marco Musy)

Míriam Calvo (J.d.C.)

7 Graduate Students

Subject

Ricard Vazquez	SPD cosmic analysis		
Albert Puig	SPD monitoring, ECAL calibration.		
Marc Grabalosa	SPD calibration and flavour tagging		
Alessandro Camboni	SPD HV data base, Threshold set, jets		
Elias López	Bs to hh as control channel to Bs to $\mu\mu$		
Antonio Perez-Calero	New HLT trigger alley		
Jordi Garra	Flavour Physics @ BaBar: CKM angles, D meson oscillation		


SPD towards data taking

SPD cosmic events analysis

Ricard Vàzquez, E. Picatoste, M. Calvo

SPD Monitoring

Albert Puig, R.G.

Parameters to be monitorized on SPD:

- Efficiency on charged particles identification
- Occupancy (check pedestal stability, aging of the detector,...)
- Cross-talk
- Dead channels

- Cosmic Trigger: **HCAL** and **ECAL** coincidence using the full L0 trigger path of the experiment .
- Data acquisition feature: +/-7 previous/next bunch-crossing data can be stored.
- Data Analysis provide:
 - An initial <u>time alignment</u> between subdetectors.
 - Identification of problems such as:
 - Mapping issues: miscabling, mislabelling.
 - Identify working/non-working channels.


SPD Calibration

M. Grabalosa, A. Camboni (E.G, E.P, H.R, L.G.)

SPD channel parameters:

- Noise offset:
 - Threshold scan without signal
 - Test with LED
- Threshold values: MIP calibration
 - Th-scan with particles
 - Calculate differential output and fit curve to MIP peak
 - To be done at start-up, after that, very scarcely
- Gain
- Nphe (obtained from MIP peak width)

Energy deposition in a CELL:

Threshold: ~0.7 MIPs

Trigger contribution

40MHz L₀ muon 1MHz Muon Muon Electron alley alley track alley ~50KHz Global HLT reco Generic B **Exclusive sels.** Single µ μ + track J/w

μ+track lines at HLT1 and HLT2 Antonio Pérez-Calero, H. Ruiz

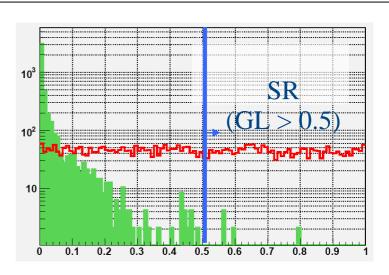
At HLT1:

- Principle: start by L0-muon candidates, confirm them at T and VELO, and look for companion tracks that form good displaced vertex with the muon
- Aim: highest efficiency for semileptonic B decays, useful for CP studies, calibration of tagging.

At HLT2: very pure source of B-generic events (other B in the event "untouched")

$B_s \rightarrow \mu \mu$ Elías López, Alessandro Camboni, H.R, L.G, E.G, M.M.

B \rightarrow hh (h= π ,K) as control channel (E. López)


Same kinematics than signal channel High event yield (~400 K/year) Must account for diff. in trigger PID

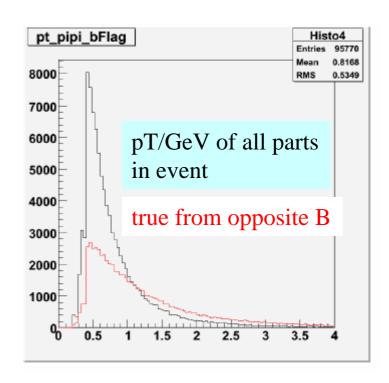
- * Useful to (among others):
 - Calibrate invariant mass distribution
 - Normalize the measurement

Optimization of the statistical method (A. Camboni)

- Choice and optimization of MVA.
- Study of selection improvements based on isolation, etc... to optimize B/S

Same cuts than $B \rightarrow hh/CPV$ preselection

red line: signal


green filled: background

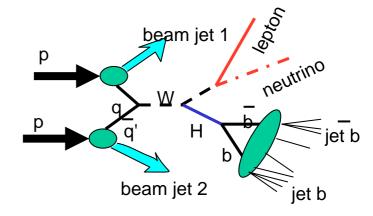
• Flavour Tagging Miriam Calvo, Marc Grabalosa, Marco Musy

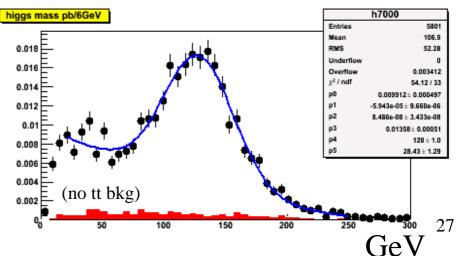
Secondary vertex (SV) finding Marc Grabalosa

- 1. Used in tagging for all decay modes, needs retuning for latest simulated data
- 2. Study of kinematical cuts by looking at typical distributions, and splitting for PID and track type.
- 3. Refine treatment of incl. SV as a tagger, assessing performance and correlations with other taggers

Study of same side tagging in $B_s -> D_s \pi$ Miriam Calvo

• Starting from study of offline selection, perform fit of oscillations to extract Δm_s along with ω as control for other channels





- Flavour Tagging development and maintenance Marco Musy
- 1. Implementation of tagging algorithms and study of performances
- 2. Development of monitoring tools for tagging. Tuning of sensitivity.
- 3. Fit of sin 2β in unified selections of J/ψ Ks with control channels
- Jet Algorithms A. Camboni, M. Musy

Retuning algorithm to account for Higgs event topology

- Make a jet energy calibration
- Study of Z->bb events for data calibration

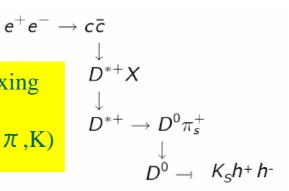
Physics Analysis (BaBar)

CKM angle y

Jordi Garra, E. Graugés (& IFIC-UV)

Measurement of the CKM angle γ

- Not even part of the initial plan of the **B-Factories**
- Today one of the main milestones
- Use of interference between B⁻ -> DK⁻ and B⁻ -> anti-D K⁻; where D or anti-D decay into the same final state $(K_s \pi \pi)$


$$\Lambda$$
 (D⁰K⁻) $\propto \lambda^3$

$$\mathbf{A}$$
 (D⁰K⁻) $\propto \lambda^3 \sqrt{\bar{\eta}^2 + \bar{\rho}^2} e^{\mathbf{i}(\delta_{\mathbf{B},\mathbf{DK}} - \mathbf{\gamma})}$

$$A_{tot} = A + A$$

D meson oscillation

Search for D⁰ mixing with $D^0 \rightarrow K_s h^+ h^$ decay modes (h= π ,K)

- $\sigma(c\bar{c}) = 1.3 \text{ nb};$
- ► $BR(D^{*+} \to D^0 \pi_s^+) \simeq 68\%$;
- ► $BR(D^0 \to K_s \pi^+ \pi^-) \simeq 2.9\%$;
- ► $BR(K_s \to \pi^+\pi^-) \simeq 70\%$;
- \blacktriangleright π_s charge tags D^0 flavour:
- D* decays inside the beam spot.

Expected yields on Run1-5:

Lumi (On+Off) = 385 fb-1

Reco efficiency~15%

 $N_{Sig}(K_S \pi + \pi -) \sim 450K$

 $N_{Sig}(K_SK+K-)\sim 1/6N_{Sig}(K_S \pi + \pi -)\sim 80K$

People and Task Distribution (last 3 years)

People

ECM (UB) Electrònica (UB) EALS (URL)

R. Graciani(Grid)

X. Vilasis

E. Graugés

J.Riera

D. Gascon

A. Herms

M. Rosello

Engineer/tec A. Comerma

S.Luengo

E. Picatoste

(becario)

students

/postdoc.

M. Calvo (PhD 2006)

C. Gonzalez (PhD June 2008)

Jean Marc Fieschi

J. Garra (PhD 2009)

H. Ruiz (since May 2005)

L. Garrido.

- VFE/CB/firmware
- Physics/integration&commissioning
- Rest (ECS,..)

People (next years)

UB URL

Eugeni Graugés (PI & coordinator) Xavier Vilasís (PI)

Lluís Garrido Míriam Calvo

Hugo Ruiz Mar Roselló

Posdoc (M. Musy) C. Abellán

Ricardo Graciani (LHCb Grid PI)

Elias López

Ricard Vazquez

Albert Puig

Marc Grabalosa

Alessandro Camboni

Jordi Garra

Antonio Pérez-Calero

E.Picatoste

D.Gascon

SPD HW experts & Upgrade

Physics

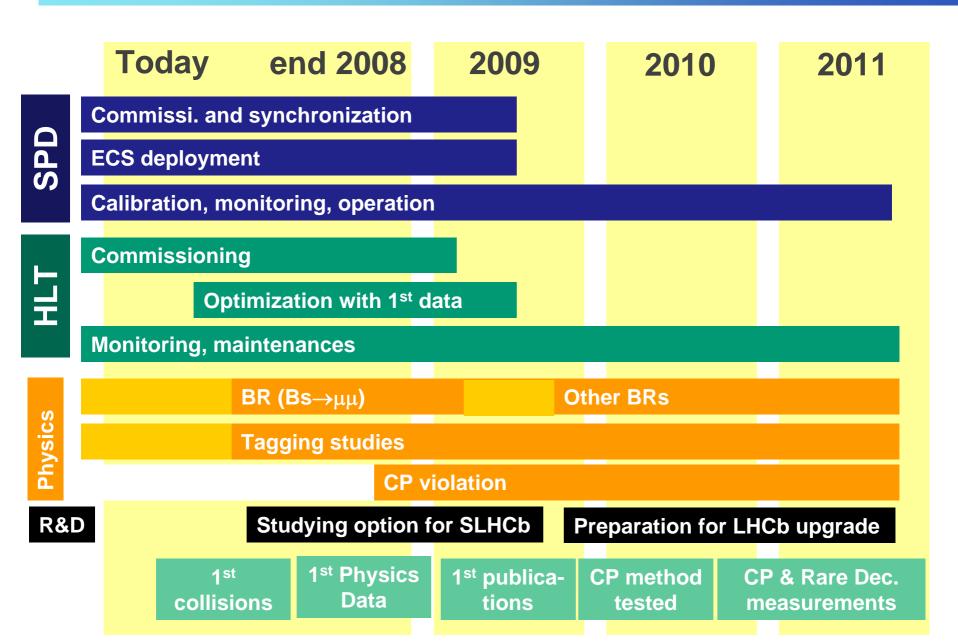
Physics Students

SPD Maintenance

The group maintains the coll. with the UB electronic dpt. focused now on silicon detector for ILC

Objeto	Cantidad Solicitada (k€)		Fracción
	UB	URL	(%)
Personal	476,20	182,60	38,19
Complementos salariales	66,15	18,9	4,93
Viajes y estancias en el CERN	472,20	136,20	35,26
Otros: Peq. Equipamiento + Fungible + Varios	290,00	81,00	21,62
Subtotales	1304,55	418,70	
Total	1725,25		100,00

- ➤ Balanced budget: 70% UB vs 30% URL (same as personnel fraction)
- ➤ Major contributions:
- 1) **Personnel**: we should maintain the same level for commissioning and long term support and maintenance (1-2 years running: still some problems to understand/resolve)
- 2) **Travel:** commissioning, data taking shifts, service tasks, maintenance, collaboration meetings...


Not Included in the budget presented in the write-up application:

Category-B common fund (Maintenance and Operation):

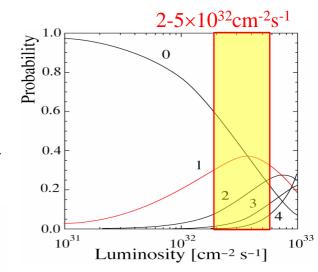
- > 8000 Euros/year
- ➤ This amount not defined until recently (~ 3% of our contribution to the CALO system)

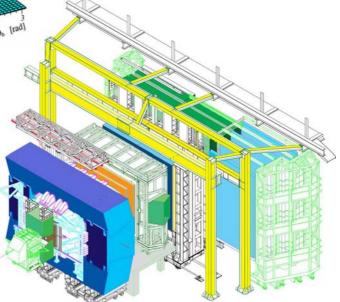
- We have successfully fulfilled our detector commitments
 - -SPD electronics installed and commissioned
- Our groups have:
 - got actively involved in the preparation of some of the most important LHCb measurements
 - attract a high number of PhD students (6 with grant + 1)
- We are ready to get the most of this extremely exciting period of 3 years in terms of:
 - Scientific results
 - Education of Phd students and junior scientists
- The proposed budget is the adequate to guarantee the exploitation of the work done up to now, in terms of scientific results, as well as the SPD maintenance and LHCb upgrade studies

The End

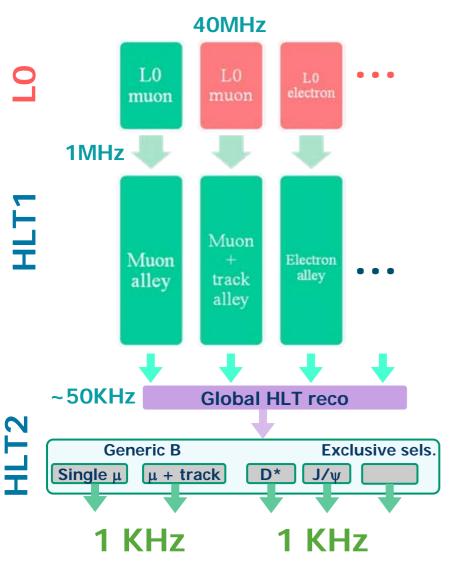
BACKUP

Introduction





- $\sigma_{\rm bb}$ ~ 500µb in pp collisions at \sqrt{s} = 14TeV
 - Luminosity limited to few 10³²cm⁻²s⁻¹
 - Maximizes probability of single interaction per crossing
 - 10^{12} bb produced per year (10^7 s) at 2×10^{32} cm⁻²s⁻¹
- · Forward peaked, correlated bb pair production
 - Single-arm forward spectrometer
 - $\theta \in 10\text{-}300 \text{mrad} (4.9 > \eta > 1.9)$
- Rates at $2 \times 10^{32} \text{ cm}^{-2} \text{ s}^{-1}$
 - Bunch crossing rate 40MHz
 - 30MHz with bunches from both directions
 - 10MHz of visible interactions (at least 2 tracks in the acceptance)
 - bb production ~ 100kHz (cc ~ 600kHz)
 - 15kHz with all the decay products of at least one B in the acceptance
 - Interesting B decays have small branching ratios
 - Typically < 10^{-3} ⇒ O(10) Hz



L0: on custom boards

hight pT candidates + not too busy
Uses calo, muon system, 2 layers of VELO
SPD separates electrons and photons,
provides veto for complicated events

HLT: runs in a PC farm of 1000 16core nodes

Full detector = full flexibility

- •HLT1 based on "regions of interest": confirm L0 candidate looking at the minimum detector information
- •HLT2 performs a global event reconstruction, then applies inclusive + exclusive selections

Our group responsible of muon+track lines in HLT1 and HLT2

Muon track alley Global reco

Generic B

μ + track • •

~0.5 KHz

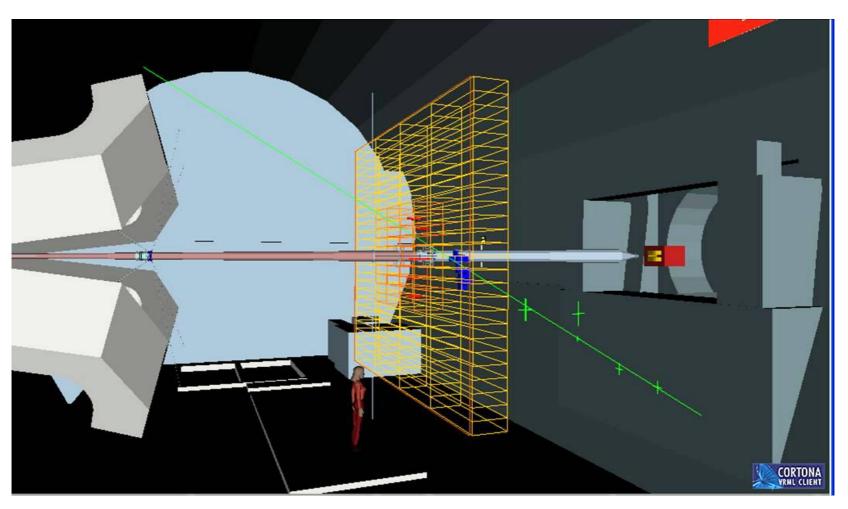
μ+track lines at HLT1 and HLT2

Antonio Pérez-Calero, H. Ruiz

At HLT1:

- Principle: start by L0-muon candidates, confirm them at T and VELO, and look for companion tracks that form good displaced vertex with the muon
- Aim: highest efficiency for semileptonic B decays, useful for CP studies, calibration of tagging.
- At HLT2: very pure source of B-generic events (other B in the event "untouched"

Already optimized with MC:

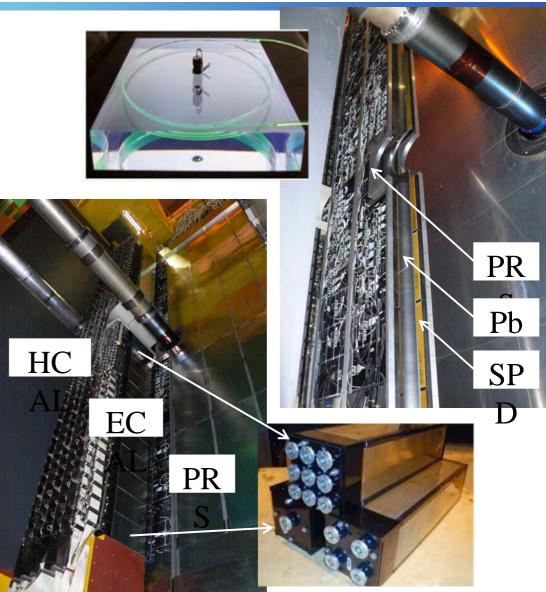

- HLT1: 98% efficiency for a reduction to 12KHz
- HLT2: fill ~600Hz of events with 70% B purity!

Next steps:

- Commission the trigger lines (and contribute to global HLT)
- Provide and maintain monitoring tools
- Optimize selections with 1st real data available
- Maintain the trigger line under future LHCb conditions

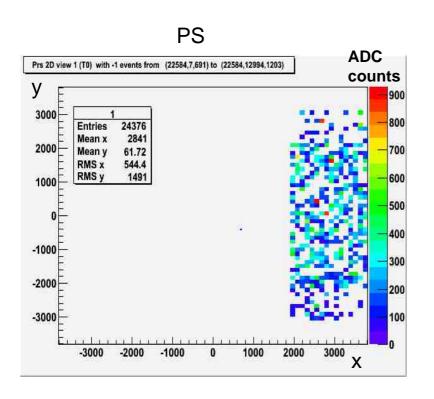
May'08

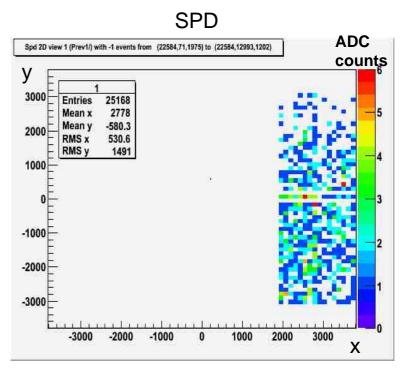
Cosmic ray seen by Muon and Calo systems



Calorimeter System

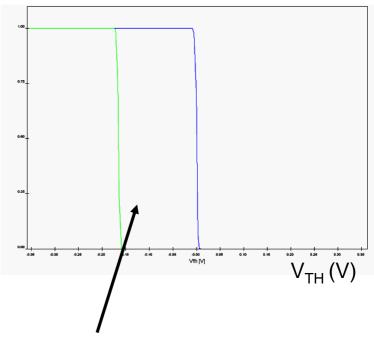
- Scintillator Pad Detector (SPD) & Preshower (PRS)
 - 15mm think scintillator pad
 - · 20 to 30 pe/mip
 - Same transverse granularity as ECAL
 - 5952×2 readout channels
 - $2.5 X_0$ Pb converter
- Shashlik EM Calorimeter
 - Pb/Scintillator, 25 X₀
 - $\sigma/E \sim 10\%/\sqrt{E} \oplus 1\%$
 - 5952 readout channels
 - 4×4 , 6×6 and 12×12 cm² (~ 1 to 3 R_M)
- Tile Hadronic Calorimeter
 - Fe/Scintillator, 5.6 λ_0
 - $\sigma/E \sim 80\%/\sqrt{E} \oplus 10\%$
 - 1488 readout channels
 - 13×13 and 26×26 cm²





• Cosmics accumulated signal on some of the outer part:

Commissioning-Physics Analysis


SPD Calibration

Alessandro Camboni, E. Picatoste

SPD threshold scan:

- SPD is a binary detector:
 - Output = 0/1 if signal below/over programmed threshold
- Input signal measurement is not direct, need to make a scan:
 - Obtain output data for different threshold values
 - For each threshold, take N events and normalize
 - Signal value is on transition from 1 to 0
- The scan is useful to measure:
 - Channel offset values
 - LED signal
 - Find MIP peak

Threshold sweep for one SPD channel:

Each VFE channel is composed of 2 subchannels.

- Large output bandwidth of 2kHz
- Exclusive selections: 200Hz
 - Specific final states: exclusive B candidates
 - $B_s \rightarrow D_s h$, $B_s \rightarrow \phi \phi$, $B^0 \rightarrow J/\psi K_s$, $B^0 \rightarrow D^* \pi$, $B_{(s)} \rightarrow h^+ h^-$, $B^0 \rightarrow K^* \mu^+ \mu^-$, $B^0 \rightarrow D^0 K^*$, $B_s \rightarrow \mu^+ \mu^-$, $B_s \rightarrow J/\psi \phi$...
 - Some include neutrals: $B^0 \rightarrow \pi^+\pi^-\pi^0$, $B^0 \rightarrow K^*\gamma$, $B_s \rightarrow \phi\gamma$, $B_s \rightarrow J/\psi\eta$...
- Inclusive selections: 1800Hz
 - Inclusive single-muon sample: 900Hz
 - Unbiased on the signal side
 - Trigger efficiencies
 - Data mining
 - High mass di-muon sample $[J/\Psi, b\rightarrow J/\Psi X...]$: 600Hz
 - Selected without lifetime information
 - Proper time resolution using prompt J/Ψ events
 - Clean mass peaks for alignment, momentum (B field) calibration
 - Inclusive D* sample [clean D*+ \rightarrow D⁰(K- π +) π + signal]: 300Hz
 - Selected without RICH information
 - Measure PID performance as a function of momentum
 - Charm physics

Two-level Trigger

MAGNET

RICH-1

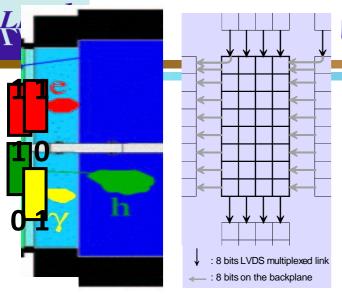
Level 0

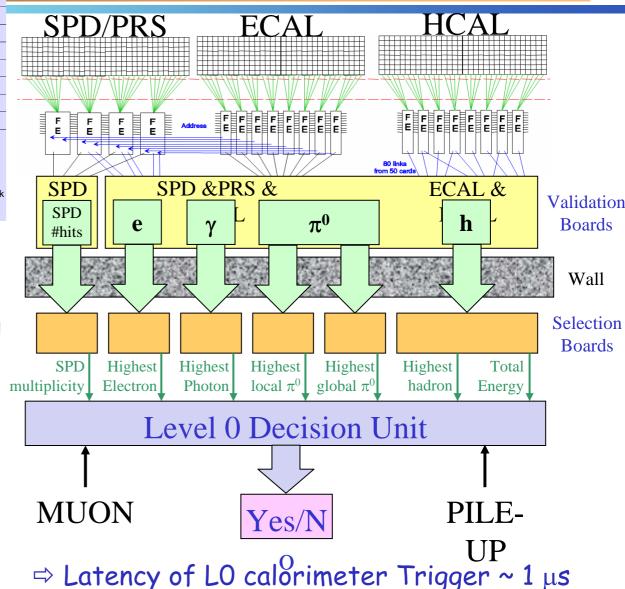
Custom Electronics

- ✓ Fully synchronous (40MHz)
- $\sqrt{4} \mu s$ fixed latency
- Pile-up veto ⊕ High p_T candidates
- ✓ from <u>Calorimeter</u> (e, γ , π ⁰, hadron)
- \checkmark and Muon system (μ , $\mu\mu$)

PC farm of ~2000 CPUs

- √Full detector information available
- ✓Only limit is CPU time
- > First uses tracking information to confirm LO decision \oplus High IP
 - √4 alleys: rate reduced to ~30kHz
- > Then build **Inclusive** and **exclusive** selections: full event reconstruction

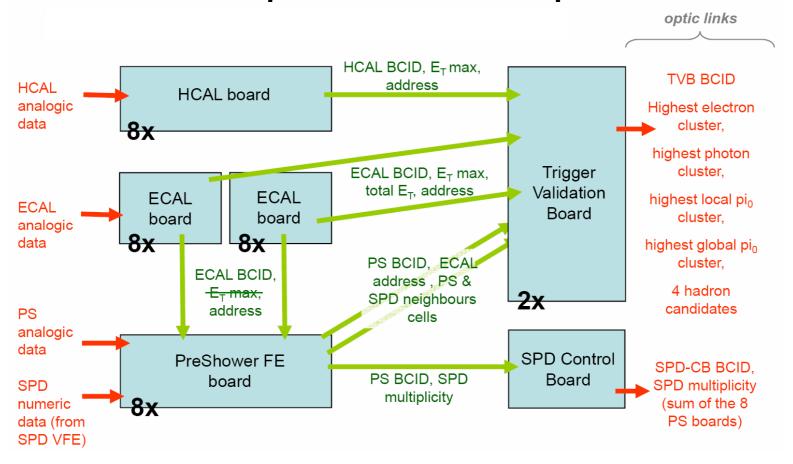

Storage: event size ~35kB



FINISH

- Level O Calo Trigger
- LA SALLE ENGINYERIA I ARQUITECTURA
 Universitat Ramon Livili
- VERSITAT DE BARCELON

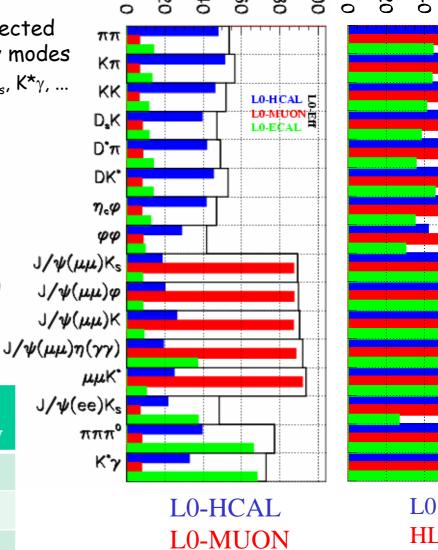
- Form all 2×2 pads ECAL and HCAL clusters
- Identify electron, γ , π^0 and hadron with highest E_T
 - SPD: charged vs. neutral
 - PRS: EM shower
 vs. Hadronic shower
- SPD hits multiplicity
 - Veto pile-up / busy events
- Total HCAL Energy
 - Veto muon halo events



Located on a platform on top of the

Trigger performance

Efficiency 28


Level O Thresholds

- Tuned to maximize offline selected yields of some typical B decay modes
 - $\pi \pi$, $J/\Psi(\mu \mu)K_s$, $J/\Psi(ee)K_s$, $K^*\gamma$, ...
- Hadron E_T > 3.6 GeV
 - · 700kHz
- e, γ , π^0 E_T > 2.5 to 4.5 GeV
 - 300kHz
- Muon p_T > 1.1 GeV/c
 - 160kHz

NB: 1MHz in total (some overlap)

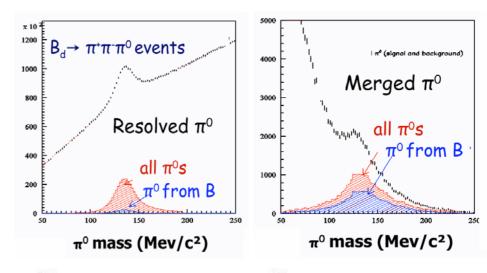
Typical Efficiencies

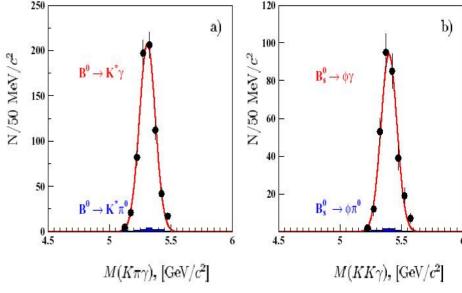
Channel type	L0 Efficiency	HLT Efficiency
Hadronic	50%	80%
Radiative	70%	70%
Muonic	90%	75%

L0-ECAL

Level-0 efficiency %

Illustration: physics with neutral

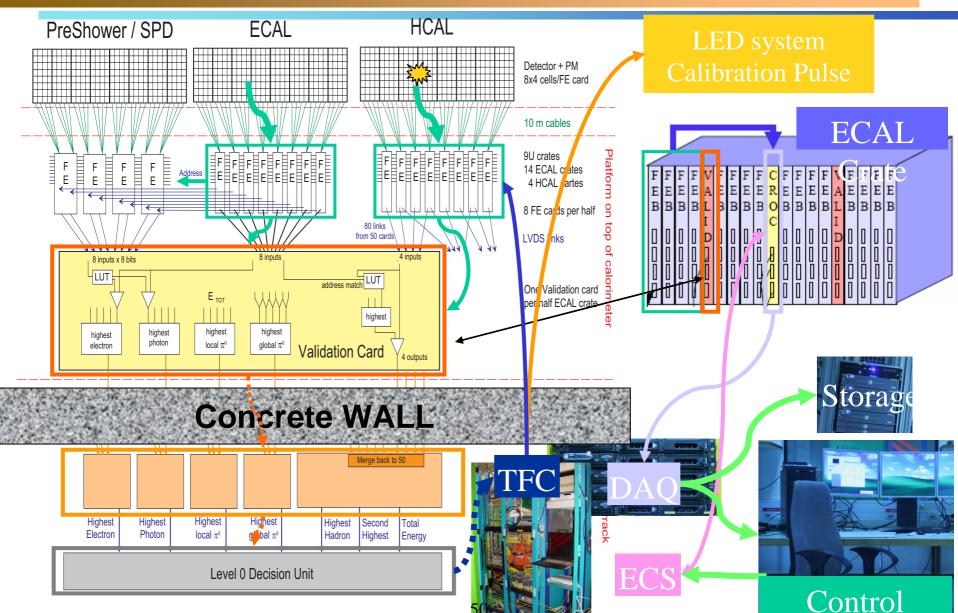



• π^0 recontruction

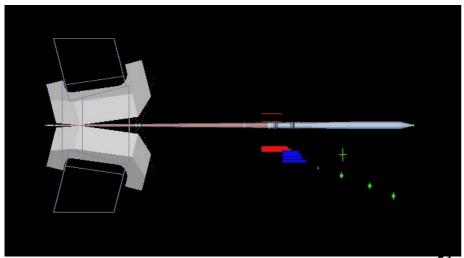
- Use calorimeter clusters not associated to tracks
- π^0 reconstructed from two separate clusters (resolved) or single merged cluster (use cluster shape)
- Reconstruction efficiency ~ 50% for $B^0 \rightarrow \pi + \pi \pi^0$
 - Mass resolution ~ 10 (15) MeV/c² for resolved (merged) $\pi^{\,0}$
 - Time dependent Dalitz plot analysis a la Snyder & Quinn for $B^0 \rightarrow \rho \pi \rightarrow \pi + \pi \pi^0$ leads to $\sigma(\alpha) \sim 10^\circ$ with $2 fb^{-1}$

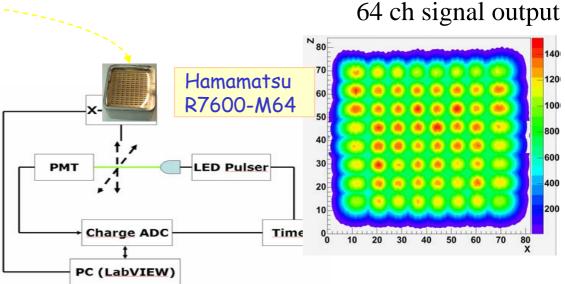
Radiative B decays

- $B_d \rightarrow K^* \gamma$ (BR = 2.9 · 10⁻⁵)
 - 35 · 10³ selected events per year with B/S < 0.7
- B_s → $\phi\gamma$ (BR = 4.3 · 10⁻⁵)
 - 9 · 10³ selected events per year with B/S < 2.4

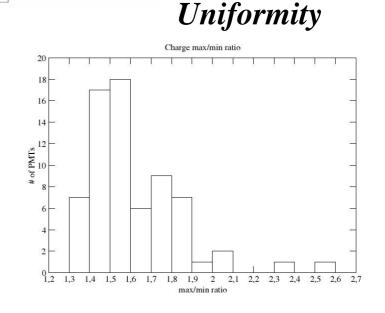

 $\sigma(M_{\rm B}) \sim 65 \ {\rm MeV/c^2}$

Full System Test (May 2007)

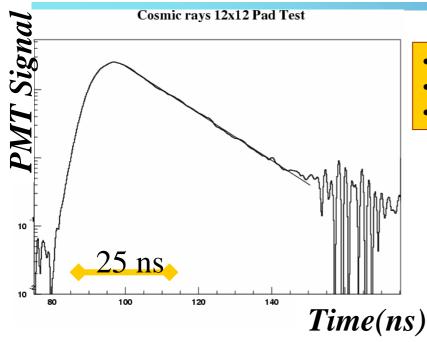


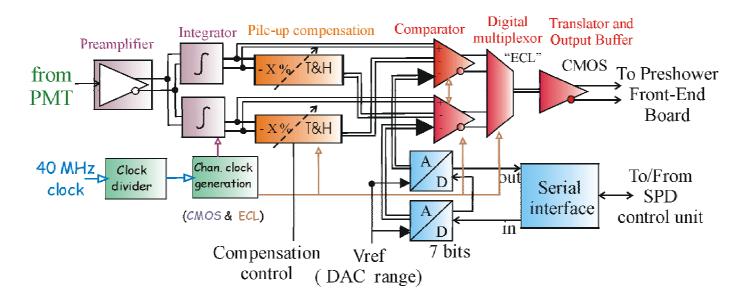


- Calorimeter cosmic trigger available since end of December 2007
 - Special HV settings to trigger on mip
 - Coincidence between ECAL and HCAL
 - Trigger rate ~ 4 Hz
- Proof of principle but not only
 - Very useful for timing
 - Helpful to finish setting up SPD and PRS
- Also have a muon cosmic trigger since April 2008



110 PMT received, tested and installed:


- 1. Gain test. All under specification
- 2. Linearity test: deviation below 5 %
- 3. Fine scan: uniformities below factor 3.
- 4. High crosstalk in 10 %.



- Only ~80 % of signal in 25 ns (depends on the pad size)
- No dead time on integration
- Different channels gain (1-4) on the same PMT

we need

- Dual channel
- •Programmable threshold for each subchannel.
- Programmable subtractor

The ASIC (App. Specific Integrated Circuit)

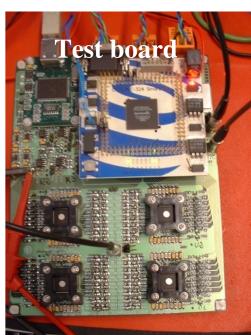


Designed in collaboration with the electronics department (UB)

- Analog Processing + Digital Control
- Signal range: 1 pC (1 V) (1 MIP ~ 30-100 fC)
- Electronics resolution 2 fc
- Radiation tolerant design
 - Guard rings for SEL prevention
 - Triple Voting Register (TVR) for SEU.

8 dual channels

AMS BiCMOS 0.8 μ m - 30 mm²

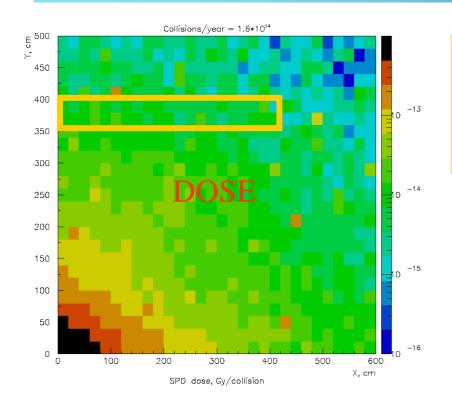

1300 produced + 600 unpacked Needed 800+160 (tested & mounted)

1)digital and bias test

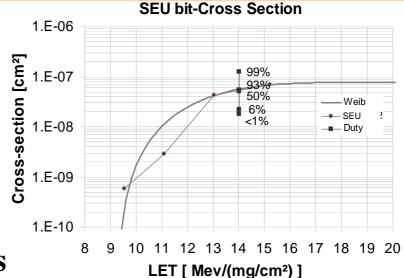
Yield over 88,5%

Total	1311	
Pass	1161	88,56%
Digital Error	112	8,54%
Bias problem	38	2,90%

2)analog part: noise, linearity, pile-up correction



Radiation qualification



Radiation qualification:

Using a krypton beam we have qualified this ASIC

- Expected total dose (tested up to 200 Gy = 20krad)
- The rate of SEU is acceptable
- No SEL

Radiation during 10 years (in the VFE electronics)*

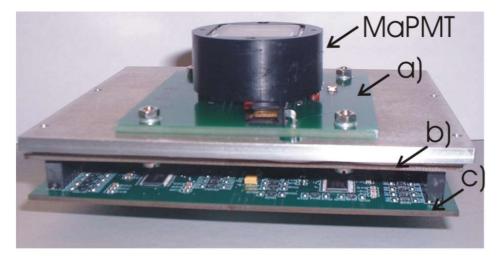
Total dose (Rad) 1 Mev Neutron eq.

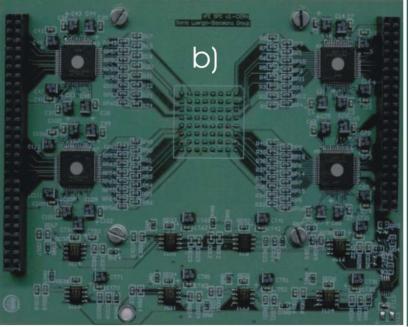
Hadrons > 20 Mev

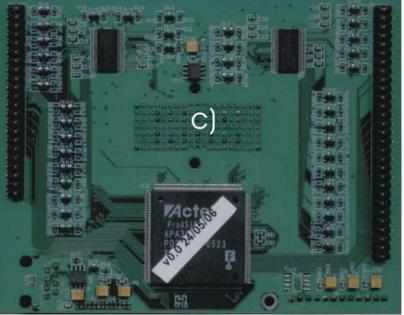
5.8*10**3

9.3*10**11 4.8*10**10

NIM xxxxxxx


LHCb



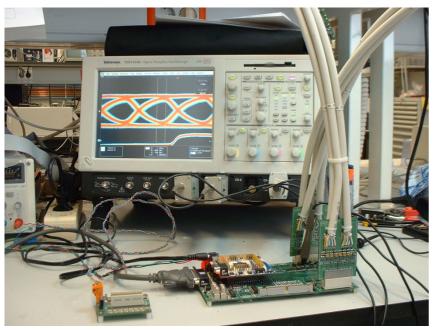




Additional test

One characteristic of modern semiconductor electronic equipment is something called infant mortality. The failure rate of new electronic equipment is generally very low. However, if the equipment is going to fail, it is likely to do so within the first few hundred hours of operation.

Stressing the components with thermal-cycling allows the detections of such components that will fail very early, avoiding its installation and later replacement.



Cables

VFE board: SPD⇒PS **LVDS** data link

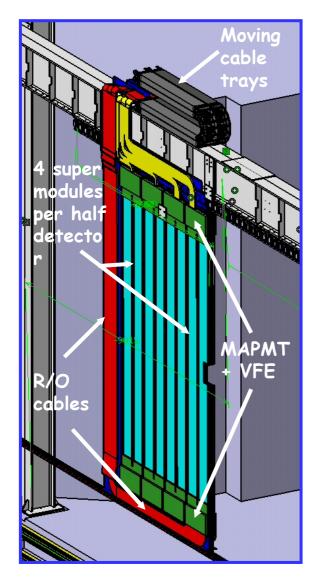
2.5 Gb/s connection (30m long)

- Std LAN cable of 4 twisted pairs (cat 7- STP).
- DS90CR215/216 Chipset multiplexes 7 bits into LVDS data pair.
- Cable Equalization
- Bit Error Rate (BER) has been tested: BER<10⁻¹³
- •120 links produced, tested and installed

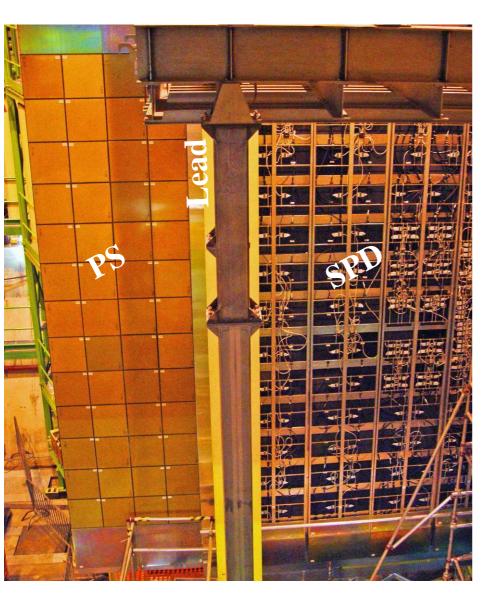
Power distribution

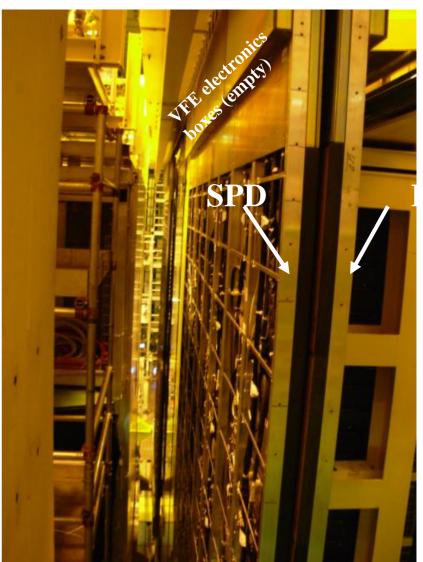
3 pairs of conductors (4 mm²)

6 pairs of conductors (0.5 mm²)


- Twisted pair of tinned copper
- Screened to the ensemble with braid of tinned copper and
- Insulation type: polyolefin Z1 halogen free

Lead panel installation A super module





Summer 2006

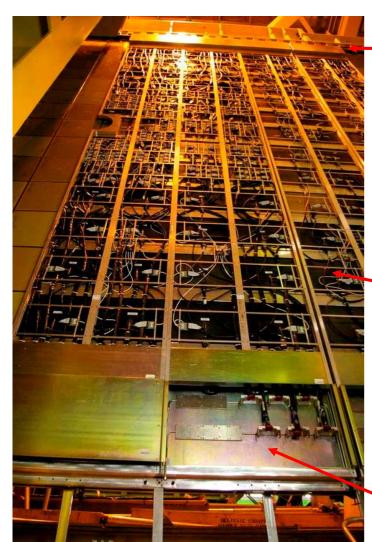
2007: transporting cables to CERN...

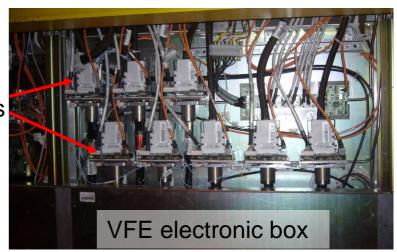
Cable installation

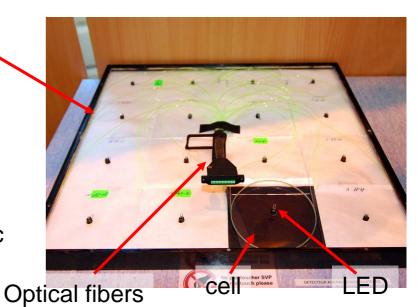
From VFE at bottom to the XCAL platform at top

From VFE at top to the XCAL platform at top

XCAL platform at top with empty tray



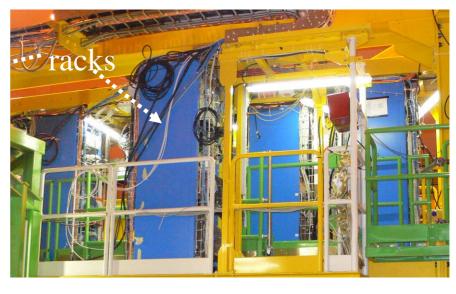


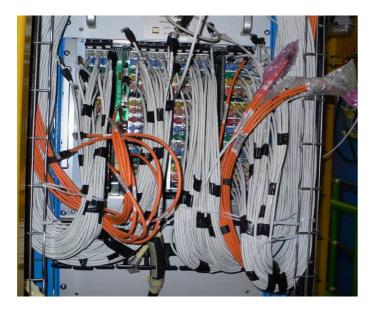

VFE electronic boxes

VFEs

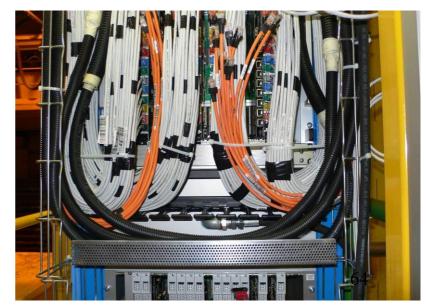
Detector cells

VFE electronic boxes

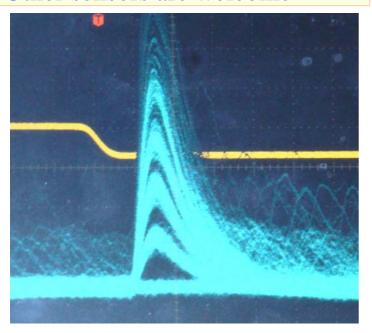


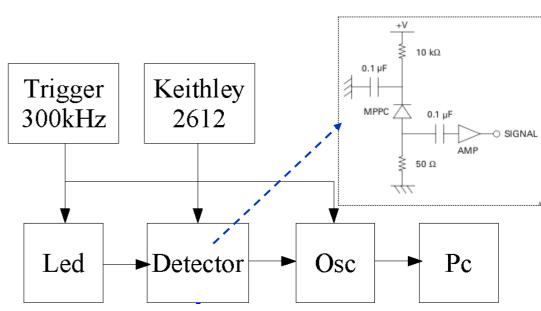


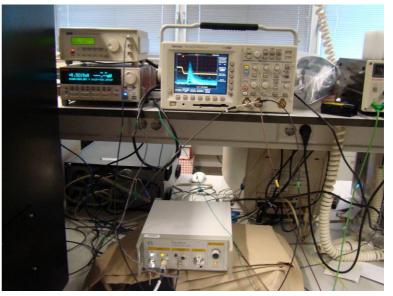
Electronics installation at XCAL platformassassissis



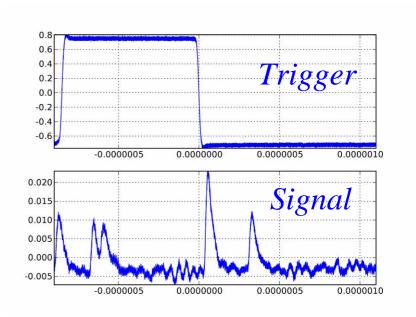
Board s on racks (and cables from VFE)



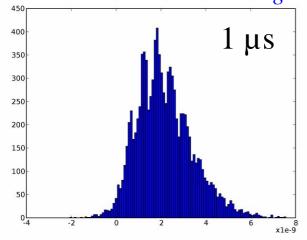


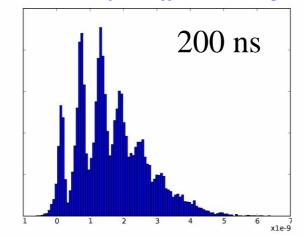

II. Current status

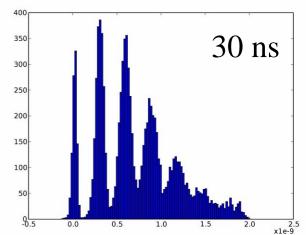
- Source/meter 2612 to trace IV curves
- Light sources:
 - 450 nm LED (500 ps FWHM)
 - 650 nm LASER (50 ps FWHM)
- Amplifier bandwidth to be improved.
- First tests: MPPC 100 µm cell
- Other sensors are welcome



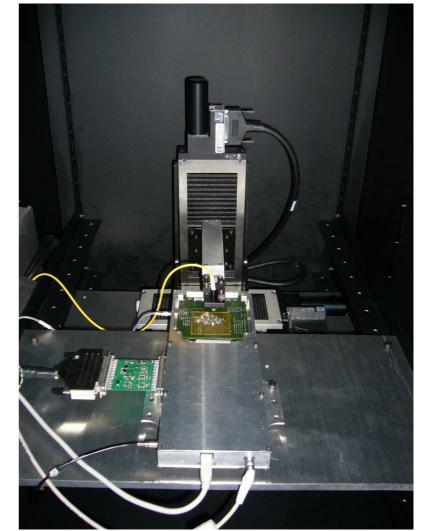
II. Current status



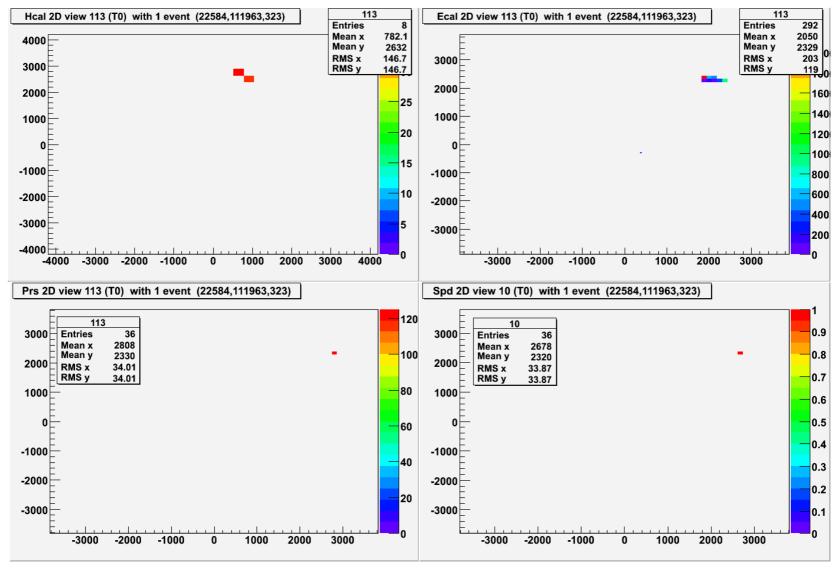



- Software to analyze data (ongoing)
- Time domain:
 - Time constant (capacitance)
 - Timming resolution
- Spectrum (needs xtalk correction):
 - Gain
 - Resolution
- Combined:
 - Dark count
 - Afterpulsing

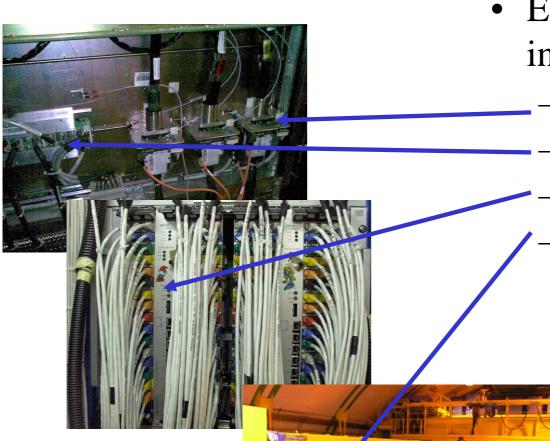
Charge distribution for different integration times


III. Short term plans

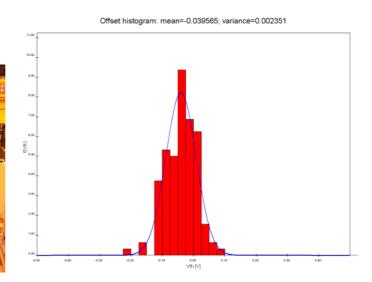
- Surface scan measurements:
 - Micro-cell structure
 - Fill factor
 - Sensitivity
 - Crosstalk
- Motorized XYZ stage: 100 mm travel, 100 nm resolution, 2 μm accuracy (just received)
- Laser + focus: 10 to 5 µm spot
- Install, align, software ...



Cosmic Ray seen in the CALO system



At present: commissionig phase


• Electronics is fully installed and tested

VFE boards

LV Regulator Boards

SPD control board

- Cables

